利用洛必达法则
lim(x→0) (arctanx - sinx)/x³
求极限基本方法有
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
2、无穷大根式减去无穷大根式时,分子有理化;
3、运用两个特别极限;
4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
5、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
如何用泰勒展开求极限?
泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)的n阶导数,等号后的多项式...
如何用泰勒展开式证明极限?
lim(x->∞) ∫(0->x) arctanv dv \/√(1+x^2) (∞\/∞ 分子分母分别求导)=lim(x->∞) arctanx \/ [x\/√(1+x^2)]=lim(x->∞) arctanx \/ [x\/√(1+x^2)]=lim(x->∞) arctanx =π\/2
怎么使用泰勒公式求极限?
要使用泰勒公式求极限,首先需要确定待求极限函数是否满足泰勒公式的条件。一般来说,如果函数在某一点处可导,并且在其周围有有限个正数范围内都可以展开成幂级数,则可以在该点使用泰勒公式求解极限。具体的步骤如下:首先,确定待求极限的表达式中是否存在某个可导函数;如果存在可导函数,则将其展开成泰...
x趋于无穷的极限如何用泰勒展开来求?
泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。根据ln(1+x)=x-x^2\/2 得出ln(1+1\/x)=1\/x-1\/x^2\/2 得出极限=x-[x-1\/2]=1\/2 N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖...
泰勒公式怎么用?
常用泰勒展开公式如下:1、sinx=x-1\/6x^3+o(x^3),这是泰勒公式的正弦展开公式,在求极限的时候可以把sinx用泰勒公式展开代替。2、arcsinx=x+1\/6x^3+o(x^3),这是泰勒公式的反正弦展开公式,在求极限的时候可以把arcsinx用泰勒公式展开代替。3、tanx=x+1\/3x^3+o(x^3),这是泰勒公式的...
如何用泰勒展开法求极限?
利用洛必达法则 lim(x→0) (arctanx - sinx)\/x³
怎么用泰勒展开式求极限?
令y=x^sinx………(1)两边取对数得:lny=sinx*lnx 两边对x求导得:(1\/y)*y`=sinx\/x+lnx*cosx(2)由(1)(2)得到y`=(sinx\/x+lnx*cosx)*x^(sinx)
泰勒公式怎么求极限?
接下来让我们进一步阐述如何利用泰勒公式来求解极限问题。通常情况下,我们遇到的极限问题是寻求某个变量趋于某一特定值时,原表达式的极限值是多少。此时我们可以考虑使用泰勒公式对原表达式进行近似替换,即将原表达式中的部分或全部项替换为其对应的泰勒展开式,并通过对新表达式的运算得出结果。为了更好地...
如何用泰勒公式求极限?
求极限时,使用等价无穷小的条件 :被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。x -> 0 时,sinx - x ~ -x^3 \/ 6 。用函数的泰勒展开式:sinx ~ x - x^3\/6 + x^5\/120 - ...。因此当 x -...
怎样用泰勒公式求函数的极限?
f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)\/2!*(x-x0)^2+...+f(n)(x0)\/n!*(x-x0)^n 定义:泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数 在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数 ...