规律如何找?

如题所述

规律是什么?上学时候经常会遇到找规律的数学题,小学时候有简单的找数字规律的题(简单的数列),到了高中有数列这种找规律 列数列公式的题,数列就是找规律题的代表,数列可以用统一的公式去描述,那么规律可以理解成可以统一描述相似过程的模型。
理科中发现的规律叫做公式,实际的生产中的规律用模型来描述。做一件事情比如包饺子,要包100个饺子,整个过程中有哪些重复的相似子过程呢?当然这里包一个饺子的过程就是重复n遍的子过程了,将这个子过程叫做单位过程,包完100个饺子=包1个饺子*100,那么我们只要掌握了包一个饺子的过程加以100次重复即可完成任务,这个单位过程是如此重要,单位过程即是模型过程,整体过程再大也最终会化成单位过程*n。上述的单位过程构成整体的方法在编程中使用for循环实现的,是啊,任何很复杂的过程都是可以用编程中的if for 去描述出来的,for循环实现了无限变有限,无限的整体也无非是由相似的单位个体构成的,我只要知道你的边界以及单位模型即可描述出你的整体构造过程。由此可见,单位模型是如此的重要,单位模型是重复的相似子过程,找规律其实就是在找单位模型,下面举例说明如何去找单位模型。
温馨提示:内容为网友见解,仅供参考
第1个回答  2022-01-02
找规律题实质:找出数列中的数与其序号之间的对应关系。
1、等差型
将每一个数与其前一个数相比较,如果差值恒相等,为一个常数(通常称为公差),则第n个数可以表示为an=a1+(n-1)d,其中a1为数列的第一个数,d为差值,(n-1)d为第一位到第n位的差值总和。
例1、3、 6、 9、12...... 求第n位数
解;从第二个数起,每个数都比前一个数增加6,差值为6,所以第n位数是:3+(n-1)×3=3n。
例2、小明在学校庆祝建国“70周年”的活动上,用围棋棋子按照某种规律摆成如图3中①②③④一行的“70”字,按照这种规律,第n个“70”字中的棋子个数是()

A.8n B.n+7 C.4n+4 D.5n+3
解:由题目得,分别确定四个图形中棋子的个数:8,12,16,20,可得到其中的规律.
第①个“70”字中的棋子个数是8=2×4;
第②个“70”字中的棋子个数是12=3×4;
第③个“70”字中的棋子个数是16=4×4;
第④个“70”字中的棋子个数是20=5×4;
进一步发现规律:第n个“70”字中的棋子个数是4(n+1)=4n+4.
故选:C.
例3、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为( )个.

解:第一个图案为3+2=5个窗花;
第二个图案为2×3+2=8个窗花;
第三个图案为3×3+2=11个窗花;
…从而可以探究:
第n个图案所贴窗花数为(3n+2)个.
故答案为:3n+2.
2、增幅为等差
即将每一次增幅与前次增幅相比较,增幅差值恒相等,为一个常数。
例4、如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒……以此规律,第11个图案需要木棒的根数是()

A.156 B.157 C.158 D.159

初中数学找规律
解:法一:由图可知第1个图案需7根木棒,第2个图案需7+6=13根木棒,增加6;第3个图案需13+8=21根木棒,增加8;第4个图案需21+10=31根木棒,增加10。即每一次增幅与前次增幅相比较,增幅差值恒相等为2。由此规律,可以依次推算出第5、6、7、8、9、10直到第11个图案共需157根木棒。
法二:第1个图案需7根木棒,7=1×(1+3)+3=1×4+3,
第2个图案需13根木棒,13=2×(2+3)+3=2×5+3,
第3个图案需21根木棒,21=3×(3+3)+3=3×6+3,……
第n个图案需[n(n+3)+3]根木棒,
所以第11个图案需11×(11+3)+3 = 11×14+3 = 157(根)木棒.
故选B.
3、等比型
将每一个数与其前一个数相比较,如果比值恒相等,为一个常数,则第n个数可以表示为an=a1qn-1,其中a1为数列的第一个数,q为比值。
例5、3、 6、 12、24...... 求第n位数
解;从第二个数起,每个数与前一个数的比值恒为2,所以第n为数是:3×2n-1。
4、增幅为等比
即将每一次增幅与前次增幅相比较,增幅比值恒相等,为一个常数。
例6、2、3、5、9、17......,求数列的第8项是多少?
解:从第二束起,每个数与前一个数的增幅分别为1、2、4、8...... 所以第6个数为17+24=33,第7个数为33+25=55,第8个数为55+26=119。
5、平方型:数列为每一项序号的平方、序号的平方 + 常数、序号的平方 - 常数
例7、已知数列的前几项为2、5、10、17.....,求数列的第n项为多少
解:由观察可知数列的前几项分别等于12+1、22+1、32+1、42+1,那么由此可推第n项为n2+1。
例8、观察下列个数:0、3、8、15、24......试按此规律写出第100个数。
解:由观察可知数列的前几项分别等于12-1、22-1、32-1、42-1,那么由此可推第n项为n2-1,
第100个数即为:1002-1 = 9999
6、指数型
例9、观察下列个数:1、2、4、8、16......试按此规律写出第11个数
解:由观察可知数列的前几项分别等于20、21、22、23......那么由此可推第n项为2n-1,
第11个数即为:210 = 1024
7、综合型
综合型是指由等差数列、等比数列、平方型、指数型等两种以上综合在一起而形成的规律题。
例10、1,9,25,49,(81),(121),的第n项为多少?
解:容易看出,数列中的数依次可写为,可以写作12、32、52、72......为平方型,而1、3、5、7......又为公差为2的等差数列,因此第n个数可以写为(2n-1)2。
例11、如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第98个图形中花盆的个数为 .

解:设第n个图形中有an(n为正整数)个花盆.
观察图形,可知:a1=6=2×3,a2=12=3×4,a3=20=4×5,…,
∴an=(n+1)(n+2)(n为正整数),
∴a98=(98+1)×(98+2)=9900.
故答案为:9900.
好了,今天的内容就分享到这里,如果您有疑问,可以在文章下方留言,欢迎继续关注,精彩还将继续!
第2个回答  2022-01-02
规律如何找,怎么学会找规律..我只能用中文表达出来。但是,不能用数学式子来表示。怎么学会用数学式子来表示? 例如:1..3..6..10..我知道这几个数有规律.1+2=3。3+3=6。6+4=10.就是每次加的数都是前面加的数再加上1...2就是前面的1+1..3就是前面的2+1..4就是前面的3+1。但是我不会用数学式子来表示。怎么可以学会用数学式子来表示..我不仅仅只要学会这一个..就是告诉我方法,可以让我学会。可以让我以后遇到无论什么找规律的题目都会。 请各位在这方面擅长的教教小弟,我不胜感激!!!好的追加!
第3个回答  2022-01-02
不知道你所说的规律是什么规律?如果说的是学习方面的事情,这个就要开动你的脑子如果是生活嘛来事情,这个需要慢慢来,或者说问一下朋友,同事来解决这个问题。
第4个回答  2022-01-02
找规律题实质:找出数列中的数与其序号之间的对应关系。
1、等差型
将每一个数与其前一个数相比较,如果差值恒相等,为一个常数(通常称为公差),则第n个数可以表示为an=a1+(n-1)d,其中a1为数列的第一个数,d为差值,(n-1)d为第一位到第n位的差值总和。
例1、3、 6、 9、12...... 求第n位数
解;从第二个数起,每个数都比前一个数增加6,差值为6,所以第n位数是:3+(n-1)×3=3n。
例2、小明在学校庆祝建国“70周年”的活动上,用围棋棋子按照某种规律摆成如图3中①②③④一行的“70”字,按照这种规律,第n个“70”字中的棋子个数是()

A.8n B.n+7 C.4n+4 D.5n+3
解:由题目得,分别确定四个图形中棋子的个数:8,12,16,20,可得到其中的规律.
第①个“70”字中的棋子个数是8=2×4;
第②个“70”字中的棋子个数是12=3×4;
第③个“70”字中的棋子个数是16=4×4;
第④个“70”字中的棋子个数是20=5×4;
进一步发现规律:第n个“70”字中的棋子个数是4(n+1)=4n+4.
故选:C.
例3、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为( )个.

解:第一个图案为3+2=5个窗花;
第二个图案为2×3+2=8个窗花;
第三个图案为3×3+2=11个窗花;
…从而可以探究:
第n个图案所贴窗花数为(3n+2)个.
故答案为:3n+2.
2、增幅为等差
即将每一次增幅与前次增幅相比较,增幅差值恒相等,为一个常数。
例4、如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒……以此规律,第11个图案需要木棒的根数是()

A.156 B.157 C.158 D.159

初中数学找规律
解:法一:由图可知第1个图案需7根木棒,第2个图案需7+6=13根木棒,增加6;第3个图案需13+8=21根木棒,增加8;第4个图案需21+10=31根木棒,增加10。即每一次增幅与前次增幅相比较,增幅差值恒相等为2。由此规律,可以依次推算出第5、6、7、8、9、10直到第11个图案共需157根木棒。
法二:第1个图案需7根木棒,7=1×(1+3)+3=1×4+3,
第2个图案需13根木棒,13=2×(2+3)+3=2×5+3,
第3个图案需21根木棒,21=3×(3+3)+3=3×6+3,……
第n个图案需[n(n+3)+3]根木棒,
所以第11个图案需11×(11+3)+3 = 11×14+3 = 157(根)木棒.
故选B.
3、等比型
将每一个数与其前一个数相比较,如果比值恒相等,为一个常数,则第n个数可以表示为an=a1qn-1,其中a1为数列的第一个数,q为比值。
例5、3、 6、 12、24...... 求第n位数
解;从第二个数起,每个数与前一个数的比值恒为2,所以第n为数是:3×2n-1。
4、增幅为等比
即将每一次增幅与前次增幅相比较,增幅比值恒相等,为一个常数。
例6、2、3、5、9、17......,求数列的第8项是多少?
解:从第二束起,每个数与前一个数的增幅分别为1、2、4、8...... 所以第6个数为17+24=33,第7个数为33+25=55,第8个数为55+26=119。
5、平方型:数列为每一项序号的平方、序号的平方 + 常数、序号的平方 - 常数
例7、已知数列的前几项为2、5、10、17.....,求数列的第n项为多少
解:由观察可知数列的前几项分别等于12+1、22+1、32+1、42+1,那么由此可推第n项为n2+1。
例8、观察下列个数:0、3、8、15、24......试按此规律写出第100个数。
解:由观察可知数列的前几项分别等于12-1、22-1、32-1、42-1,那么由此可推第n项为n2-1,
第100个数即为:1002-1 = 9999
6、指数型
例9、观察下列个数:1、2、4、8、16......试按此规律写出第11个数
解:由观察可知数列的前几项分别等于20、21、22、23......那么由此可推第n项为2n-1,
第11个数即为:210 = 1024
7、综合型
综合型是指由等差数列、等比数列、平方型、指数型等两种以上综合在一起而形成的规律题。
例10、1,9,25,49,(81),(121),的第n项为多少?
解:容易看出,数列中的数依次可写为,可以写作12、32、52、72......为平方型,而1、3、5、7......又为公差为2的等差数列,因此第n个数可以写为(2n-1)2。
例11、如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第98个图形中花盆的个数为 .

解:设第n个图形中有an(n为正整数)个花盆.
观察图形,可知:a1=6=2×3,a2=12=3×4,a3=20=4×5,…,
∴an=(n+1)(n+2)(n为正整数),
∴a98=(98+1)×(98+2)=9900.
故答案为:9900.
好了,今天的内容就分享到这里,如果您有疑问,可以在文章下方留言,欢迎继续关注,精彩还将继续!

怎样找规律?
2、归纳法:通过总结整理已知条件,从中发现规律。例如,将一些数字按大小顺序排列,再观察它们的奇偶性、质合性等特征,从而找到一般规律。3、演绎法:通过推理和演绎得出结论。例如,根据已知的命题或定理,通过推理和证明得出新的命题或定理,从中发现规律。4、对比法:通过比较两个或多个事物的异同点,...

如何找到规律?
找到规律的方法有很多,以下是一些常用的方法:1. 观察和记录:对于一系列数据或事件,观察其特征、顺序、变化等,记录下来,通过对比和整理数据,可以发现其中的规律。2. 推理和假设:根据已有的数据或已知的规律,进行推理和假设,然后通过验证和实验来确认或修正。3. 数学建模:对于一些复杂的问题,可以...

找规律,怎么找规律?
看对数字的感觉。通过加减乘除乘方开方运算找出规律,要么就是等差,要么就是倍数关系。上面的数加下面的数等于中间的数,左面的数加右面的数等于中间的数。这就是规律。例如:36、33,规律为:把数字按从左到右的顺序依次编号,34为1号,36为2号,则一列数分为单双号,单号数以次递增,加1,为...

如何快速找到规律填上空格?
找规律的方法:1、标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。2、斐波那契数列法:每个数都是前两个数的和。3、等差数列法:每两个数之间的差都...

初中找规律技巧
1、标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。解答这一题,...

找规律的诀窍
1、创新:在找规律的过程中,不要害怕提出新的想法和假设。有时候,最不寻常的规律可能就是最正确的规律。耐心:找规律需要耐心和毅力,你可能需要花费大量的时间和精力,才能找到正确的规律。2、学习:找规律是一个学习的过程,你需要不断学习和掌握新的知识和技能,才能更好地找规律。思考:找规律不...

找规律的题目有哪些规律公式?
找规律题型的小技巧:1、先观察,有什么特点,然后依次排查几种常用的方法,比如差值,相邻的三项有什么运算关系,如果数变化剧烈,可以考虑平方、立方,还要熟悉常用的一些平方值和立方值。2、公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。3、求通项的数列时,能够...

数列中的规律如何找?
5、规律为:前一项的分子加分母之和等于下一项的分子,因此下一项分子为:46+76=122。二、分母部分:1、4、11、29、76 1、4=1+2+1 2、11=4+6+1 3、29=11+17+1 4、76=29+46+1 5、规律:前一项的分母加后一项的分子再加1得出后一项的分母,因此,下一项分母为:76+122+1=199 三...

有哪些找规律的方法?
1. 数字规律法:通过观察一系列数字或数字序列,寻找其中的规律和模式。例如,可以尝试计算每个数与前一个数的差异、比率或乘积,看是否能找到递增或递减的规律。2. 图形规律法:对于一系列图形或图案,可以通过观察图形的形状、线条、对称性等特征,寻找其中的规律。可以尝试通过旋转、镜像、移动等操作,...

数学找规律题技巧是什么?
1、先观察。做找规律题,拿到题目后,先不要着急做题,首先应该先去观察。主要是观察题目和题型,通过观察,揣摩下出题者的用意,有些简单的题,通过观察就可以得到想要的答案的。所以拿到题目时,先以观察为主,观察题目,观察数字,观察图画。2、列条件。做找规律题,在观察完题目后,假如还是没有...

相似回答