1 1为什么等于2

脑筋急转弯

不是一般的人能答出来的!
科学家到现在才说出来,很复杂的!
1+1为什么等于2?这个问题看似简单却又奇妙无比。 在现代的精密科学中,特别在数学和数理逻辑中,广泛地运用着公理法。什么叫公理法呢?从某一科学的许多原理中,分出一部分最基本的概念和命题,对这些基本概念不下定义,而这一学科的所有其它概念都必须直接或间接由它们下定义;对这些基本命题(也叫公理)也不给予论证,而这一学科中的所有其它命题却必须直接或间接由它们中推出。这样构成的理论体系就叫公理体系,构成这种公理体系的方法就叫公理法。 1+1=2就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的。 至于“1+1为什么等于2?”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理。不过用反证法还是可以证明的:假设1+1不等于2,则数学就是一锅粥,凡是用到数学的地方都是一锅粥,人类社会就乱了套了,所以1+1必须等于2。 1+1=2看似简单,却对于人类认识世界有非同寻常的意义。 人类认识世界的过程就像一个小孩滚雪球的过程:第一步,小孩先要用双手捧一捧雪,这一捧雪就相当于人类对世界的感性认识。第二步,小孩把手里的雪捏紧,成为一个小雪球,这个小雪球就相当于人类对感性认识进行加工,形成了概念。于是就有了1。第三步,小孩把雪球放在地上,发现雪球可以粘地上的雪,这就相当于人类的理性认识。雪可以粘雪,相当于1+1=2。第四步,小孩把粘了雪的雪球在雪地上滚一下,发现雪球粘雪后越来越大,这就相当于人类认识世界的高级阶段,可以进入良性循环了。相当于2+1=3。1,2,3可以排成一个最简单的数列,但是可以演绎至无穷。 有了1只是有了概念,有了1+1=2才有了数学,有了2+1=3才开始了数学的无穷变化。 物理学与1+1=2的关系 人类认识世界的过程是一个由感性到理性,有已知到未知的过程。 在数学当中已知1、2、3,则可以至于无穷,什么是物理学当中的1、2、3呢?我认为:质量、长度、时间等基本物理概念相当于1,它们是组成物理学宏伟大厦的砖和瓦;牛顿运动定律相当于2,它使我们有了真正的物理学和科学的物理分析方法;力学的相对性原理相当于3,使牛顿运动定律可以广泛应用。在经典物理学中一切都是确定无疑的,有了已知条件,我们就可以推出未知。 等到相对论的出现,一切都变了。现在相对论已经深入人心,即便是那些反对相对论的人,也基本上是认可相对论的结论的,什么时间可变、长度可变、质量可变、时空弯曲……经典物理学认为光速对于不同的观测者是不同的(虽然牛顿是个唯心主义者)。相对论则认为光速对于不同的观测者是不变的(虽然我们是唯物主义者)。我们丢掉了经典物理学所有不变的东西,换来的是相对论唯一不变的东西----光速。我觉得就象是用许多西瓜换来了一个芝麻一样,而且这个芝麻是很抽象的,它在真空中,速度最快,让你根本捉不到、摸不到。 我认为牛顿三条运动定律是真理,是完美的,是不容置疑的。质疑牛顿运动定律的人开口闭口说不存在绝对静止的物体,也不存在绝对不受外力的物体,却忘了上学时用的物理教材,开头都有绪论,绪论中都说:一切物质都在永恒不息地运动着,自然界一切现象就是物质运动的表现。运动是物质的存在形式、物质的固有属性……还提到:抽象方法是根据问题的内容和性质,抓住主要因素,撇开次要的、局部的和偶然的因素,建立一个与实际情况差距不大的理想模型来研究。例如,“质点”和“刚体”都是物体的理想模型。把物体看作质点时,质量和点是主要因素,物体的形状和大小时可以忽略不计的次要因素。把物体看作刚体——形状和大小保持不变的物体时,物体的形状、大小和质量分布时主要因素,物体的变形是可以忽略不计的次要因素。在物理学研究中,这种理想模型是十分必要的。研究机械运动的规律时,就是从质点运动的规律入手,再研究刚体运动的规律而逐步深入的。有人在故意混淆视听,有人在人云亦云,但听的人自己要想一想,牛顿用抽象的方法来分析问题,是符合马克思主义分析问题抓主要矛盾的指导思想的,否定了牛顿运动定律,我们拿什么来分析相对静止状态、匀速直线运动、自由落体运动……? 看来相对论不但搞乱了我们的基本概念,还搞乱了我们的分析方法,这才是最危险的,长此以往,物理学将不再是物理学,而是一锅粥,一锅发霉的粥! 我认为物理学发展的正确思路是先要从质量、长度、时间、能量、速度等基本物理概念的理解上着手,在物理学界开展一场正名运动,然后讨论牛顿运动定律是否错了,错的话错在哪里,最后相对论的对错也就不言自明了,也容易接受了。
本文使用素数相遇期望法演绎P2x(1,1)及其下确界,以证明2x≡p1+p2,(x>2).
文中申明 π(1)≠0, π(1)=1.
引理1。 建立素数分布密率函数: y=xπ(x)/x, 获
(x/㏒ x) 1<π(x)≤(x/㏒ x)㏒ ymax, (x>a). ⑴
证。 建立函数: y=xπ(x)/x, 则 π(x)=(x/㏒ x)㏒ y.
∵ lim π(x)/x= lim 1/㏒ x, (x→∞). [1]
我们有 lim xπ(x)/x= lim x1/㏒ x, (x→∞).
∵ x1/㏒ x= e, lim xπ(x)/x=e= ymin, (x→∞). ㏒ ymin=1.
当 x>a, ymin<y≤ymax.
∴ (1)式成立。 引理1得证。
引理2。 命P2x(1,1)为:当x一定时,适合2x=p1+p2的素数p1或p2的个数,(p1,p2的组数)。 x为大于
2的 自然数,2<p1≤p2.
P2x(1,1)≥[((2x-3)/㏒(2x-3)-((x-1)/㏒(x-1))㏒ ymax)(x/㏒x-π(2))/((x-1)/2)]+1
=[k(x)]+1, (a<x=2n-1). ⑵
P2x(1,1)≥[((2x-3)/㏒(2x-3)-(x/㏒x)㏒ y max)((x-1)/㏒(x-1)-π(2))/((x-2)/2)]+1
=[f(x)]+1, (a<x=2n). ⑶
证。 ∵ 2<p1≤p2 , 4<2p1≤p1+p2 , ∴ 2<p1≤x.
P2x(1,1)=∑ (π(p2)-π(p2-1)), (2<p1≤p2=2x-p1).
=∑ (π(2x-p1)-π(2x-p1-1)), (2<p1≤x ). ⑷
= π(2x-3)-π(2x-3-1)
+π(2x-5)-π(2x-5-1)
+ … - …
+π(2x-p1)-π(2x-p1-1)
+π(2x-p1 max)-π(2x-p1 max-1), (2<p1≤x ).
当 π(2x-p1)=π(p2 ), π(2x-p1)-π(2x-p1-1)=1.
当 π(2x-p1)≠π(p2), π(2x-p1)-π(2x-p1-1)=0 .
① 设x=2n-1, p1 max≤x, p1包含于[3,x]; 2x-p1 max≥x, p2包含于[x,2x-3].
每一区间的奇数数目均为 (x-1)/2.
从两区间各取一奇数,继续,直至取完。
两素数相遇数目的均值=(π(2x-3)-π(x-1))(π(x)-π(2))/((x-1)/2).
依据⑴式, 作三项转换,即为p1,p2相遇数目的下确界(方括取整,小数进1)。
∴ ⑵式成立。
② 设x=2n, p1 max≤x-1, p1包含于[3,x-1];2x-p1 max≥x+1, p2包含于[x+1,2x-3].
每一区间的奇数数目均为 (x-2)/2.
从两区间各取一奇数,继续,直至取完。
两素数相遇数目的均值=(π(2x-3)-π(x))(π(x-1)-π(2))/((x-2)/2).
依据⑴式,作三项转换,即为p1,p2相遇数目的下确界(方括取整,小数进1)。
∴⑶式成立。 引理2得证。
定理1。 P2x(1,1)存在下确界: *
P2x(1,1)≥[((2x-3)/㏒(2x-3)-((x-1)/㏒(x-1))㏒ 199/19)(x/㏒x-2)/((x-1)/2)]+1
=[k(x)]+1>1, (31≤x=N={2n-1 或2n}<∞ ).
证。① 设π(1)=0,则 π(2)=1, x>a=10, ㏒ ymax=㏒ 11330/113=μ.
当n≥9, [k(x)]≥[f(x)]≥1.
由⑵,P2x(1,1)≥[((2x-3)/㏒(2x-3)-((x-1)/㏒(x-1))μ)(x/㏒x-1)/((x-1)/2)]+1
=[k(x)]+1, (17≤x=2n-1).
当 x=199, P2x(1,1)<[k(x)]+1, 出现反例。
由⑶,P2x(1,1)≥[((2x-3)/㏒(2x-3)-(x/㏒x)μ)((x-1)/㏒(x-1)-1)/((x-2)/2)]+1
=[f(x)]+1, (18≤x=2n).
当 x=64,166,496,1336, P2x(1,1)<[f(x)]+1, 出现更多 反例。
说明“1非素数”: 不顶用,纯捣乱, ∴ π(1)≠0.
② 设π(1)=1, π(2)=2, x>a=2, ㏒y max=㏒ 199/19=λ.
当n≥18, [k(x)]≥[f(x)]≥1, 大中取大,舍去低值[f(x)], n≥16.
P2x(1,1)≥[((2x-3)/㏒(2x-3)-((x-1)/㏒(x-1))λ)(x/㏒x-2)/((x-1)/2)]+1

=[k(x)]+1, (31≤x=2n-1).
当 31≤x=2n-1, 无反例,上式成立。
大自然从不破坏自己的规律性。 ∴ π(1)=1,1必为素数。
讨论 P2x(1,1)的下确界的性质:
1。一致连续性。 ∵ k(x)为一初等函数,其定义区间[31,2n-1]为闭区间,故在该区间上k(x),
[k(x)]+1都一致连续。[2] ∴ [k(x)]+1也适用于(31≤x=N={2n-1或2n}<∞ ).
当 x=34, P2x(1,1)=[k(x)]+1=2, 为下确界点。
2。单调递增性。 微分函数 k(x):
k′(x)=(2/(x-1)2)((x2-x)λ/((㏒(x-1))2㏒x)+(x2-2x+1)λ/((㏒x)2㏒(x-1))
+(2x2-4x+3)/((㏒(2x-3))㏒x)+(4x-4)/(㏒(2x-3))2-(2x2-5x+3)/((㏒x)2㏒(2x-3))
-(2x2-2x)/((㏒(2x-3))2㏒x)-(x2-2x+1)λ/((㏒(x-1))㏒x)-(2x-2)λ/(㏒(x-1))2
-2/㏒(2x-3)).
∵ ㏒x-㏒(x-1)<㏒(2x-3)-㏒x<㏒2, (31≤x=N).
命 ㏒x 取代 ㏒(2x-3),㏒(x-1).
k′(x)=(2/((x-1)2(㏒x)3))((2x2-3x+1)λ-(4x2-7x+3)+((2x2-1)-(x2-1)λ)㏒x-2(㏒x)2 ).
=(2/((x-1)2(㏒x)3))φ(x).
∵ φ′(x)=(2 ㏒x -3)(2-λ)x+7-3λ-(4㏒x-(λ-1))/x.
>(2㏒(x-1)-3)(2-λ)x+7-3λ-(4㏒(2x-3)-(λ-1))/x.
>0, (31≤x=N).
∴ φ(x)在[31,N]上单调递增。 ∵ φ(31)>0,φ(x)>0. ∴ k′(x)>0.
∴ k(x)在[31,N]上单调递增。 ∵ [k(31)]=1, ∴ [k(x)]+1>1. **
定理1得证。
定理2。 任一大于4的偶数均可表为二素数之和。
证。 由定理1, P2x(1,1)>1, (31≤x<∞ ).
由⑷式, P2x(1,1)≥1, (2<x≤31 ).
∴ P2x(1,1)≥1, (2<x<∞ ). 定理2得证。
注* P2x(1,1)存在上确界:
P2x(1,1)≤π(2x-3)-π(x-1), (2<x=2n-1).
P2x(1,1)≤π(2x-3)-π(x), (2<x=2n).
注** 凡不会微分的数学爱好者,演绎时,可舍弃单调递增性的微分过程,而选择:
∵ k(x)<k(x+1), (31≤x=N). ∴ k(x)在[31,N]上单调递增。
∵ [k(31)]=1, ∴ [k(x)]+1>1.
这样, 哥德巴赫猜想,便打破了用 初等方法无法证明的迷信,使其拥有更广泛的普及性。
注*** E(x)=0.
根据定理2, P2x(1,1)≥1, (2<x<∞ ). 任一大于4的偶数均可表为二素数之和。
又∵ 1是素数,我们有 2=1+1,4=1+3. ∴ 任一偶数均可表为二奇素数之和。
∴1+1=2
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-05-17
用以下的方式界定0,1和2 (eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, §43-44):
0 := {x: x ={y: ~(y = y)}}
1 := {x: y(yεx.&.x\{y}ε0)}
2 := {x: y(yεx.&.x\{y}ε1)}
〔比如说,如果我们从某个属于1这个类的分子拿去一个元素的话,那麽该分子便会变成0的分子。换言之,1就是由所有只有一个元素的类组成的类。〕
现在我们一般采用主要由 von Neumann 引入的方法来界定自然数。例如:
0:= ∧, 1:= {∧} = {0} =0∪{0},
2:= {∧,{∧}} = {0,1} = 1∪{1}
[∧为空集]
一般来说,如果我们已经构作集n, 那麽它的后继元(successor) n* 就界定为n∪{n}。
在一般的集合论公理系统中(如ZFC)中有一条公理保证这个构作过程能不断地延续下去,并且所有由这构作方法得到的集合能构成一个集合,这条公理称为无穷公理(Axiom of Infinity)(当然我们假定了其他一些公理(如并集公理)已经建立。
〔注:无穷公理是一些所谓非逻辑的公理。正是这些公理使得以Russell 为代表的逻辑主义学派的某些主张在最严格的意义下不能实现。〕
跟我们便可应用以下的定理来定义关于自然数的加法。
定理:命"|N"表示由所有自然数构成的集合,那麽我们可以唯一地定义映射A:|Nx|N→|N,使得它满足以下的条件:
(1)对于|N中任意的元素x,我们有A(x,0) = x ;
(2)对于|N中任意的元素x和y,我们有A(x,y*) = A(x,y)*。
映射A就是我们用来定义加法的映射,我们可以把以上的条件重写如下:
(1) x+0 = x ;(2) x+y* = (x+y)*。
现在,我们可以证明"1+1 = 2" 如下:
1+1
= 1+0* (因为 1:= 0*)
= (1+0)* (根据条件(2))
= 1* (根据条件(1))
= 2 (因为 2:= 1*)
〔注:严格来说我们要援用递归定理(Recursion Theorem)来保证以上的构作方法是妥当的,在此不赘。]
1+ 1= 2"可以说是人类引入自然数及有关的运算后"自然"得到的结论。但从十九世纪起数学家开始为建基于实数系统的分析学建立严密的逻辑基础后,人们才真正审视关于自然数的基础问题。我相信这方面最"经典"的证明应要算是出现在由Russell和Whitehead合着的"Principia Mathematica"中的那个。
我们可以这样证明"1+1 = 2":
首先,可以推知:
αε1 (∑x)(α={x})
βε2 (∑x)(∑y)(β={x,y}.&.~(x=y))
ξε1+1 (∑x)(∑y)(β={x}∪{y}.&.~(x=y))
所以对于任意的集合γ,我们有
γε1+1
(∑x)(∑y)(γ={x}∪{y}.&.~(x=y))
(∑x)(∑y)(γ={x,y}.&.~(x=y))
γε2
根据集合论的外延公理(Axiom of Extension),我们得到1+1 = 2
第2个回答  2009-05-13
因为所以 ,科学道理。天文地理,懒得理你!(开玩笑)
这是科学家的问题,我们只要知道1+1=2就行啦。
第3个回答  2009-05-17
在10进制加法运算中1+1就=2
第4个回答  2009-05-14
因为是两个一!

1 1为什么等于2
1 1等于2是错误的。在数学中,基本的加法法则是,当两个数相加时,结果是将这两个数的值累加起来。因此,1加1的结果应该是将1和1的值累加起来,即1 + 1 = 2。所以,1 1等于2是错误的,正确的结果应该是2。这个问题的答案涉及到数学中的基本概念和原则。数学是一门严谨的学科,它有一套严格...

1 1为什么等于2
因为:1 1=1+1=2 前面一个1,后面再加上一个1,就是1 1嘛。然后,再按正常的数学逻辑,1+1就等于2了。希望能帮到你!

1 1为什么等于2
1.因为2-1=1啊, 呵呵 2.因为1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:一、任何不小于6的偶数,都是两个奇质数之和;二、任何不小于9的奇数,都是三个奇质数之和。这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推...

1 1为什么等于2
也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠"仅一步之遥,在世界数学界引起了轰动。"1+2"也被誉为陈氏定理。

1 1为什么等于2
1+1=2就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的。 至于“1+1为什么等于2?”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理。不过用反证法还是可以证明的:假设1+1不...

1 1为什么等于2
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。还有种说法是:1+1=2是可以证明的,当然这不是所谓的歌德巴赫...

1 1为什么等于2
十进制的1+1=2,没有为什么,约定俗成的。八进制和十六进制虽然也是,但是,那个1和2是八、十六进制的1、2,。二进制1+1=10.0123456789是印度人发明,阿拉伯人传向欧洲的。称为 阿拉伯数字。参考资料:http:\/\/baike.baidu.com\/view\/22218.htm ...

1+1为什么等于2?
3、陈景润通过构造和证明,推导出1+1等于2的结论。他指出,根据集合论的定义,两个集合的并集就是这两个集合中所有元素的集合。因此,我们可以将数字1和数字1这两个集合合并,得到的并集就是包含数字1和数字1的所有元素的集合,也就是数字2。因此,1+1等于2。4、陈景润进一步解释了这个证明的普遍性...

1 1为什么等于2
“1+1”不是等于多少的问题,而是“歌德巴赫猜想”的简称。在1742年6月7日给欧拉的信中,哥德巴赫提出了以下猜想:a) 任一不小于6之偶数,都可以表示成两个奇质数之和;b) 任一不小于9之奇数,都可以表示成三个奇质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数...

1+1为什么等于2?请详细解释一下。
1+1=2 是初等数学范围内的数值计算等式。当某个原始人第一个意识到1+1=2,进而认识到两个数相加得到另一个确定的数时,这一刻是人类文明的伟大时刻,因为他发现了一个非常重要的性质——可加性。这个性质及其推广正是数学的全部根基,它甚至说出数学为什么用途广泛的同时,告诉我们数学的局限性。人...

相似回答
大家正在搜