sin(1/x)在x趋近0时是个有界函数,有界函数和无穷小的积就为0了。
x趋向0时有f(x)也趋du向于0=f(0),按定义,它在x=0处连续
x趋向0时[f(x)- f(0)]/x = f(x)/x = xsin(1/x)有极限0,故它在x=0处可版导,且导权数为0
利用定义来求
f '(0) = lim(x->0) [ f(x) - f(0) ] / (x-0)
= lim(x->0) x² sin(1/x) / x
= lim(x->0) x sin(1/x) 无穷小与有界函数的乘积还是无穷小
= 0
扩展资料:
(1)连续点:如果函数在某一邻域内有定义,且x->x0时limf(x)=f(x0),就称x0为f(x)的连续点。
一个推论,即y=f(x)在x0处连续等价于y=f(x)在x0处既左连续又右连续,也等价于y=f(x)在x0处的左、右极限都等于f(x0)。
这就包括了函数连续必须同时满足三个条件:
(1)函数在x0 处有定义;
(2)x-> x0时,limf(x)存在;
(3)x-> x0时,limf(x)=f(x0)。
参考资料来源:百度百科-函数可导性与连续性