已知数列{an}满足a1=1,an+1=2an, n为奇数an+2, n为偶数,且a1+a3+a5+…+a2k...

已知数列{an}满足a1=1,an+1=2an, n为奇数an+2, n为偶数,且a1+a3+a5+…+a2k-1=3049,则正整数k的值为(  )A.11B.8C.10D.9

无其他回答

...n为奇数an+2, n为偶数,且a1+a3+a5+…+a2k...
由题意可得:a2k+1=a2k+2,a2k=a2k-1+1=2a2k-1,(k∈N*)∴a2k+1=2a2k-1+2,化为a2k+1+2=2(a2k-1+2),∴数列{a2k-1+2}是以3为首项,2为公比的等比数列,∴a2k-1+2=3×2k-1,化为a2k?1=3×2k?1?2.∴3049=a1+a3+a5+…+a2k-1=3×(1+2+22+…+2k-1...

已知数列{an}满足a1=1,an+1={2an n为奇数,an+2,n为偶数},且a1+a3+a...
= 2a(n-1) + 2 a(n+1) +2= 2(a(n-1) +2)[a(n+1) +2]\/(a(n-1) +2) =2 [a(n+1) +2] \/ (a1+2) = 2^(n\/2)a(n+1) +2 = 3.2^(n\/2)a(n+1) = -2+3.2^(n\/2) ; n is even n is even => n+1 is odd an = -2+ 3.2^[(n-1)\/2]...

...满足:a1=1,且n为奇数时,an+1=2an,n为偶数时,an+1=an+1,n∈N*.(1...
1)]+a2n+1=3(21?2n1?2?n)+2n+1?1=2n+3-3n-7

...满足:首项a1=1且an+1=2an,n为奇数an+2,n为偶数那么下列说法中正确...
∵首项a1=1且an+1=2an,n为奇数an+2,n为偶数∴a2=2,a3=4,a4=8,a5=10,a6=20,a7=22,a8=44该数列的奇数项1,4,10,22…既不成等差数列,也不成等比数列,故选项A、B不正确;该数列的奇数项a1,a3,a5,…,分别加4后为5,9,14,26,…,不成等比数列,故C不正确;该数...

已知数列{an}满足a1=1,an+1={1\/2an+n,n为奇数,an-2n,n为偶数} 记bn=a...
所以cn是首项为c1=-0.5,公比为q=1\/2的等比数列 其通项公式为 cn=c1*q^(n-1)=-0.5*(1\/2)^(n-1)=-1\/(2^n)其前n项和为 Sn=c1*(1-q^n)\/(1-q)=1\/(2^n)-1 所以bn=cn+2=2-1\/(2^n)a(2n+1)=a(2n)-2(2n)=a(2n)-4n a(2n)+a(2n+1)=2a(2n)-4n=2(cn...

已知数列{an}满足:a1=1,an+1=1\/2an+n,n 为奇数,an-2n,n 为偶数.设bn=...
∴b(n+1)\/bn=1\/2 ∴数列{bn}是等比数列,公比为1\/2 b1=a3+2=a2-4+2=1\/2a1+1-2=-1\/2 bn=-(1\/2)^n 2 ∵bn=a(2n+1)+4n-2 ∴a(2n+1)=bn-4n+2=-1\/2^n-4n+2 S=a1+a3+a5+...+a99 =1+(-1\/2-1\/4-1\/8-...-1\/2^49)-4(1+2+3+...+49)+2·49 =...

如果数列{an}满足a1=1,当n为奇数时,an+1=2an;当n为偶数时,an+1=an+...
按照题意可得数列为1 2 4 8 10 20 22 44 46 30所以该数列的偶数项各项分别加4后为6,12,24,48,构成等比数列,故选:D

已知数列{an}满足a1=a2=1,an+2=2an,n为偶数an+1,n为奇数,则a5+a6=...
由an+2=2an,n为偶数an+1,n为奇数,可得,数列{an}的所有偶数项构成以1为首项,以2为公比的等比数列,数列{an}的所有奇数项构成以1为首项,以1为公差的等差数列,∴a5=a1+2d=1+2×1=3,a6=a2q2=1×22=4,∴a5+a6=7;前2n项和S2n=S奇+S偶=n+n(n?1)×12+1×(1?2n)1?2...

已知数列{an}满足a1=1,an+1=12an+n,n为奇数an?2n,n为偶数,记bn=a2n,n...
(12)n-1=-(12)n,即bn=2-(12)n.(3)∵a2n+1=a2n-4n=bn-4n∴S2n+1=a1+a2+…+a2n+a2n+1=(a2+a4+…+a2n)+(a1+a3+a5+…+a2n+1)=(b1+b2+…+bn)+[a1+(b1-4×1)+(b2-4×2)+…+(bn-4×n)]=a1+2(b1+b2+…+bn)-4×(1+2+…+n)=1+2...

已知数列{an}满足a1=1,an+1=2an(n为整奇数)an+1(n为正偶数),则其前6...
∵a1=1,an+1=2an(n为正奇数)an+1(n为正偶数),∴a2=2a1=2,a3=a2+1=2+1=3,a4=2a3=6,a5=a4+1=7,a6=2a5=14.∴其前6项之和是1+2+3+6+7+14=33.故答案为:33.

相似回答
大家正在搜