已知数列{an}满足:a1=1,且n为奇数时,an+1=2an,n为偶数时,an+1=an+1,n∈N*.(1)求a2,a3并证明数

已知数列{an}满足:a1=1,且n为奇数时,an+1=2an,n为偶数时,an+1=an+1,n∈N*.(1)求a2,a3并证明数列{a2n-1+1}为等比数列;(2)求数列{an}的前2n+1项和S2n+1.

无其他回答

已知数列{an}满足:a1=1,且n为奇数时,an+1=2an,n为偶数时,an+1=an+...
1=2n+3-3n-7

如果数列{an}满足a1=1,当n为奇数时,an+1=2an;当n为偶数时,an+1=an+...
按照题意可得数列为1 2 4 8 10 20 22 44 46 30所以该数列的偶数项各项分别加4后为6,12,24,48,构成等比数列,故选:D

...n为奇数an?2n,n为偶数,记bn=a2n,n∈N*.(1)求a2,a3;(2)求
(12)n-1=-(12)n,即bn=2-(12)n.(3)∵a2n+1=a2n-4n=bn-4n∴S2n+1=a1+a2+…+a2n+a2n+1=(a2+a4+…+a2n)+(a1+a3+a5+…+a2n+1)=(b1+b2+…+bn)+[a1+(b1-4×1)+(b2-4×2)+…+(bn-4×n)]=a1+2(b1+b2+…+bn)-4×(1+2+…+n)=1+2...

已知数列{an}满足:a1=1,an+1=an+1n为奇数2ann为偶数(n∈N*),设bn=a...
(I)∵数列{an}满足:a1=1,an+1=an+1n为奇数2ann为偶数(n∈N*),设bn=a2n-1,∴b2=a3=2a2=2(a1+1)=4,b3=a5=2a4=2(a3+1)=10,同理,bn+1=a2n+1=2a2n=2(a2n+1+1)=2(bn+1)=2bn+2.(II)①b1=a1=1,b1+2≠0,bn+1+2bn+2=2bn+2+2bn+2=2,...

已知数列{an}满足:a1=1,anan+1=2n(n∈N*).(1)证明:对任意正整数n,an+2...
(4分)∵a1=1,a1a2=2,∴a2=2.…(5分)知:?k∈N*,a2k-1=a1×2k-1=2k-1,a2k=a2×2k-1=2k.…(6分)所以数列{an}的通项公式为an=2k?1,n=2k?12k,n=2k,k∈N*.…(7分)或an=(2)n?1,n为正偶数(2)n, n为正奇数 (2)?k∈N*,a2k-1+a2k=3×...

已知数列{an}满足:a1=1,an+1=12an+n,n为奇数an?2n,n为偶数(1)求a2...
2a2n?2=12a2n+1 +2n+1?2a2n?2=12(a2n?4n)+2n?1a2n?2=12a2n?1a2n?2=12,又∵b1=a2?2=?12,∴数列{bn}是等比数列,且bn=(?12)(?12)n?1=(?12)n;(3)由(2)得:a2n=bn+2=2?(12)n (n=1,2,…,50)∴S100=a2+a4+…+a100=2×50?12(1?...

已知数列{an}满足a1=1,an+1=2an, n为奇数an+2, n为偶数,且a1+a3+a5...
由题意可得:a2k+1=a2k+2,a2k=a2k-1+1=2a2k-1,(k∈N*)∴a2k+1=2a2k-1+2,化为a2k+1+2=2(a2k-1+2),∴数列{a2k-1+2}是以3为首项,2为公比的等比数列,∴a2k-1+2=3×2k-1,化为a2k?1=3×2k?1?2.∴3049=a1+a3+a5+…+a2k-1=3×(1+2+22+…+...

已知数列{an}满足an+1=an+1,n为奇数?2an,n为偶数且a1=1,则a3-a1=...
(1)∵an+1=an+1,n为奇数?2an,n为偶数,∴a2=a1+1=a1+1=2,而a3=a2+1=-2a2=-4,因此,a3-a1=-4-1=-5.(2)根据题意,得a2n+2=a2n+1+1=-2a2n+1,∴bn=a2n+2-a2n=-3a2n+1,从而bn+1=-3a2n+2+1=-3(-2a2n+1)+1=6a2n-2,∴bn+1=-2bn,可得{bn...

已知数列{an}满足a1=a2=1,an+2=2an,n为偶数an+1,n为奇数,则a5+a6=...
由an+2=2an,n为偶数an+1,n为奇数,可得,数列{an}的所有偶数项构成以1为首项,以2为公比的等比数列,数列{an}的所有奇数项构成以1为首项,以1为公差的等差数列,∴a5=a1+2d=1+2×1=3,a6=a2q2=1×22=4,∴a5+a6=7;前2n项和S2n=S奇+S偶=n+n(n?1)×12+1×(1?2n)1?2...

数列an的前n项和为sn,a1=1,an=2an,n为奇数,an=an+1,n为偶数,求a2a3的...
an=2a(n-1)=2[a(n-2)+1]=2a(n-2)+2 an+2=2a(n-2)+4=2[a(n-2)+2]a1+2=3 an+2=3*2^[(n-1)\/2]an=3*2^[(n-1)\/2]-2 当n为偶数时,an=a(n-1)+1=2a(n-2)+1 an+1=2[a(n-2)+1]a2+1=3 an+1=3*2^(n\/2-1)an=3*2^(n\/2-1)-1 ...

相似回答