求这些关于正态分布的高中数学题

求一些简单正态分布数学题,比较基础的简单的,比较适合初学者的。最好有答案解析

正态分布
【知识网络】
1、取有限值的离散型随机变量均值、方差的概念;
2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;
3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。
【典型例题】
例1:(1)已知随机变量X服从二项分布,且E(X)=2.4,V(X)=1.44,则二项分布的参数n,p的值为 ( )
A.n=4,p=0.6 B.n=6,p=0.4 C.n=8,p=0.3 D.n=24,p=0.1
答案:B。解析: , 。
(2)正态曲线下、横轴上,从均数到 的面积为( )。
A.95% B.50% C.97.5% D.不能确定(与标准差的大小有关)
答案:B。解析:由正态曲线的特点知。
(3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( )
A 32 B 16 C 8 D 20
答案:B。解析:数学成绩是X—N(80,102),

(4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。
答案:8.5。解析:设两数之积为X,
X 2 3 4 5 6 8 10 12 15 20
P 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
∴E(X)=8.5.
(5)如图,两个正态分布曲线图:
1为 ,2为 ,
则 , (填大于,小于)
答案:<,>。解析:由正态密度曲线图象的特征知。
例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;
(Ⅱ)求甲、乙两人至少有一人考试合格的概率.
答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下:
ξ 0 1 2 3
P
甲答对试题数ξ的数学期望
Eξ= .
(Ⅱ)设甲、乙两人考试合格的事件分别为A、B,则
P(A)= = ,P(B)= .
因为事件A、B相互独立,
方法一:
∴甲、乙两人考试均不合格的概率为
∴甲、乙两人至少有一人考试合格的概率为
答:甲、乙两人至少有一人考试合格的概率为 .
方法二:
∴甲、乙两人至少有一个考试合格的概率为

答:甲、乙两人至少有一人考试合格的概率为 .
X 1 2 3
P a 0.1 0.6
Y 1 2 3
P 0.3 b 0.3
例3:甲、乙两名射手在一次射击中得分为两个相互独立的随机变量X和Y,其分布列如下:

(1)求a,b的值;
(2)比较两名射手的水平.
答案:(1)a=0.3,b=0.4;
(2)

所以说甲射手平均水平比乙好,但甲不如乙稳定..
例4:一种赌博游戏:一个布袋内装有6个白球和6个红球,除颜色不同外,6个小球完全一样,每次从袋中取出6个球,输赢规则为:6个全红,赢得100元;5红1白,赢得50元;4红2白,赢得20元;3红3白,输掉100元;2红4白,赢得20元;1红5白,赢得50元;6全白,赢得100元.而且游戏是免费的.很多人认为这种游戏非常令人心动,现在,请利用我们学过的概率知识解释我们是否该“心动”.。
答案:设取出的红球数为X,则X—H(6,6,12), ,其中k=0,1,2,…,6
设赢得的钱数为Y,则Y的分布列为
X 100 50 20 —100
P

∴ ,故我们不该“心动”。
【课内练习】
1.标准正态分布的均数与标准差分别为( )。
A.0与1 B.1与0 C.0与0 D.1与1
答案:A。解析:由标准正态分布的定义知。
2.正态分布有两个参数 与 ,( )相应的正态曲线的形状越扁平。
A. 越大 B. 越小 C. 越大 D. 越小
答案: C。解析:由正态密度曲线图象的特征知。
3.已在 个数据 ,那么 是指
A. B. C. D. ( )
答案:C。解析:由方差的统计定义知。
4.设 , , ,则 的值是 。
答案:4。解析: ,
5.对某个数学题,甲解出的概率为 ,乙解出的概率为 ,两人独立解题。记X为解出该题的人数,则E(X)= 。
答案: 。解析: 。
∴ 。
6.设随机变量 服从正态分布 ,则下列结论正确的是 。
(1)
(2)
(3)
(4)
答案:(1),(2),(4)。解析: 。
7.抛掷一颗骰子,设所得点数为X,则V(X)= 。
答案: 。解析: ,按定义计算得 。
8.有甲乙两个单位都想聘任你,你能获得的相应的职位的工资及可能性如下表所示:
甲单位 1200 1400 1600 1800
概率 0.4 0.3 0.2 0.1
乙单位 1000 1400 1800 2200
概率 0.4 0.3 0.2 0.1

根据工资待遇的差异情况,你愿意选择哪家单位并说明理由。
答案: 由于E(甲)=E(乙),V(甲)<V(乙),故选择甲单位。
解析:E(甲)=E(乙)=1400,V(甲)=40000,V(乙)=160000。
9.交5元钱,可以参加一次摸奖。一袋中有同样大小的球10个,其中有8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和(设为 ),求抽奖人获利的数学期望。
答案:解:因为 为抽到的2球的钱数之和,则 可能取的值为2,6,10.
, ,

设 为抽奖者获利的可能值,则 ,抽奖者获利的数学期望为

故,抽奖人获利的期望为- 。
10.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.
(1)求该题被乙独立解出的概率;
(2)求解出该题的人数 的数学期望和方差.
答案:解:(1)记甲、乙分别解出此题的事件记为A、B.
设甲独立解出此题的概率为P1,乙为P2.
则P(A)=P1=0.6, P(B)=P2

0 1 2
P 0.08 0.44 0.48


或利用 。

【作业本】
A组
1.袋中装有5只球,编号为1,2,3,4,5,从中任取3球,以X表示取出球的最大号码,则E(X)等于 ( )
A、4 B、5 C、4.5 D、4.75
答案:C。解析:X的分布列为
X 3 4 5
P 0.1 0.3 0.6
故E(X)=3 0.1+4 0.3+5 0.6=4.5。
2.下列函数是正态分布密度函数的是 ( )
A. B.
C. D.
答案:B。解析:选项B是标准正态分布密度函数。
3.正态总体为 概率密度函数 是 ( )
A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数
答案:B。解析: 。
4.已知正态总体落在区间 的概率是0.5,那么相应的正态曲线在 时达到最高点。
答案:0.2。解析:正态曲线关于直线 对称,由题意知 。
5.一次英语测验由40道选择题构成,每道有4个选项,其中有且仅有一个是正确的,每个选对得3分,选错或不选均不得分,满分120分,某学生选对一道题的概率为0.7,求该生在这次测验中的成绩的期望为 ;方差为 。
答案:84;75.6。解析:设X为该生选对试题个数,η为成绩,则X~B(50,0.7),η=3X∴E(X)=40×0.7=28 V(X)=40×0.7×0.3=8.4
故E(η)=E(3X)=3E(X)=84 V(η)=V(3X)=9V(X)=75.6
6.某人进行一个试验,若试验成功则停止,若实验失败,再重新试验一次,若试验三次均失败,则放弃试验,若此人每次试验成功的概率为 ,求此人试验次数X的分布列及期望和方差。
解:X的分布列为
X 1 2 3
P

故 , 。
7.甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s,若他们独立的射击两次,设乙命中10环的次数为X,则EX= ,Y为甲与乙命中10环的差的绝对值.求s的值及Y的分布列及期望.
答案:解:由已知可得 ,故 .
有Y的取值可以是0,1,2.
甲、乙两人命中10环的次数都是0次的概率是 ,
甲、乙两人命中10环的次数都是1次的概率是 ,
甲、乙两人命中10环的次数都是2次的概率是
所以 ;
甲命中10环的次数是2且乙命中10环的次数是0次的概率是 ,
甲命中10环的次数是0且乙命中10环的次数是2次的概率是
所以 ,故
所以Y的分布列是
Y 1 2 3
P

所以 Y的期望是E(Y)= 。
8.一软件开发商开发一种新的软件,投资50万元,开发成功的概率为0.9,若开发不成功,则只能收回10万元的资金,若开发成功,投放市场前,召开一次新闻发布会,召开一次新闻发布会不论是否成功都需要花费10万元,召开新闻发布会成功的概率为0.8,若发布成功则可以销售100万元,否则将起到负面作用只能销售60万元,而不召开新闻发布会则可能销售75万元.
(1)求软件成功开发且成功在发布会上发布的概率.
(2)求开发商盈利的最大期望值.
答案:解:(1)设A=“软件开发成功”,B=“新闻发布会召开成功” 软件成功开发且成功在发布会上发布的概率是P(AB)=P(A)P(B)=0.72.
(2)不召开新闻发布会盈利的期望值是 (万元);
召开新闻发布会盈利的期望值是
(万元)
故开发商应该召开新闻发布会,且盈利的最大期望是24.8万元..

B组
1.某产品的废品率为0.05,从中取出10个产品,其中的次品数X的方差是 ( )
A、0.5 B、0.475 C、0.05 D、2.5
答案:B。解析:X—B(10,0.05), 。
2.若正态分布密度函数 ,下列判断正确的是 ( )
A.有最大值,也有最小值 B.有最大值,但没最小值
C.有最大值,但没最大值 D.无最大值和最小值
答案:B。
3.在一次英语考试中,考试的成绩服从正态分布 ,那么考试成绩在区间 内的概率是 ( )
A.0.6826 B.0.3174 C.0.9544 D.0.9974
答案:C。解析:由已知X—N(100,36),
故 。
4.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,若取到一个红球则得2分,用X表示得分数,则E(X)=________;V(X)= _________.
答案: ; 。解析:由题意知,X可取值是0,1,2,3,4。易得其概率分布如下:
X 0 1 2 3 4
P

E(X)=0× +1× +2× +3× +4× =
V(X)= × + × + × + × + × - =
注:要求次品数的数学期望与方差,应先列出次品数X的分布列。
5.若随机变量X的概率分布密度函数是 ,则 = 。
答案:-5。解析: 。
6.一本书有500页,共有100个错字,随机分布在任意一页上,求一页上错字个数X的均值、标准差。
解:∵X—B
X的标准差 。
7.某公司咨询热线电话共有10路外线,经长期统计发现,在8点至10点这段时间内,外线同时使用情况如下表所示:
电话同时打入次数X 0 1 2 3 4 5 6 7 8 9 10
概率 0.13 0.35 0.27 0.14 0.08 0.02 0.01 0 0 0 0
若这段时间内,公司只安排2位接线员(一个接线员只能接一部电话).
(1)求至少一路电话号不能一次接通的概率;
(2)在一周五个工作日中,如果有三个工作日的这一时间至少一路电话不能一次接通,那么公司形象将受到损害,现在至少一路电话不能一次接通的概率表示公司的“损害度”,,求这种情况下公司形象的“损害度”;
(3)求一周五个工作日的时间内,同时打入电话数X的数学期望.
答案:解:(1)只安排2位接线员则至少一路电话号不能一次接通的概率是
1-0.13-0.35-0.27=0.25;
(2)“损害度” ;
(3)一个工作日内这一时间内同时打入电话数的期望是4.87,所以一周内5个工作日打入电话数的期望是24.35..
8.一批电池(一节)用于手电筒的寿命服从均值为35.6小时、标准差为4.4小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于40小时的概率是多少?
答案:解:电池的使用寿命X—N(35.6,4.42)

即这节电池可持续使用不少于40小时的概率是0.1587。
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-06-04
正态分布:N(u,g^),只要注意到u是对称轴,g是标准差即可,
例:已知m~N(1.g^),则P(0<m<1)与P(1<m<2)相等,是否成立,答案:成立
还有一种题目是需要查表的,06年湖北高考理科数学题就有一个是正态分布题目,你可以下下来看看.

高中数学正态分布
ξ服从正态分布N(1,σ^2)(σ>0),说明它关于ξ=1对称 ξ在(0,1)和(1,2)上的概率是相等的,都是0。4 ξ在(0,2)上的概率为0.4+0.4=0.8

高中数学正态分布
解设方案1的利润为X,则X服从正态分布N(8.9)则P(X>5)=P(5<X≤8)+P(X>8)=1\/2P(5<X≤11)+P(X>8)=1\/2*0.6826+P(X>8)=0.3413+0.5 =0.8413 设方案2的利润为Y,则Y服从正态分布N(3.4)则P(X>5)=P(X>3)-P(3<X≤5)=P(X>3)-1\/2P(1<X≤5)=0...

高中数学正态分布,题和答案如图,看不懂答案.求大神指教..谢谢!_百度...
(1)前面说了:依题意 μ=150【μ 是正态分布图的中间那根竖线在横轴上的交点,也就是中点的值,知道的嘛】σ²=625【标准误差也知道的嘛】,现在 σ=25,来源于 √625 =25;100=μ-2σ,来源于 μ-2σ=150-2×25=100 【你都明白】题目要求“估算消费额X”,这个X是处于一个范...

高中数学概率问题
这个是正态分布的问题.N表示正态分布,N(3,1)第一个数是3表示正态分布曲线的对称轴,因为P(X>4)=p,由于3是对称轴,由对称性得到P(X<2)=p,因此P(2<X<4)=1-2p

高中数学正态分布习题,要详解
三个电子元件的使用寿命均服从正态分布,得:三个电子元件的使用寿命超过1000小时的概率为p=1\/2,超过1000小时时元件1或元件2正常工作的概率p1=1-(1-p)2=3\/4 那么该部件的使用寿命超过1000小时的概率为p2=p1*p=1\/2*3\/4=3\/8

高中数学题,正态分布。为什么超过1000小时的概率为1\/2。包括后面怎么算...
因为这道题中的μ是1000,而μ是正态图像的对称轴,所以1000以后的是1\/2 后面的算法是,首先3必须亮 1和2得分类 一、1和2都亮就是1\/2乘1\/2再乘(元件三亮)1\/2 二、1亮2不亮就是1\/2乘(1-1\/2)再乘(元件三亮)1\/2 三、1不亮2亮就是(1-1\/2)乘1\/2再乘(元件三亮)1\/2 ...

求这些关于正态分布的高中数学题
答案:B。解析:选项B是标准正态分布密度函数。3.正态总体为 概率密度函数 是 ( )A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数答案:B。解析: 。4.已知正态总体落在区间 的概率是0.5,那么相应的正态曲线在 时达到最高点。答案:0.2。解析:正态曲线关于直线 对称,由题意知 。5.一次英语...

请各位帮忙解答一道正态分布的题目
这个貌似和正态分布公式没太大关系 X—N(μ,σ^2) 其中μ是期望(这里就是平均分)σ是标准差 所以你这个题就是数学成绩是X—N(80,10^2)正态分布有个3σ原则:(μ-σ,μ+σ)区间的面积是0.683 (μ-2σ,μ+2σ)区间的面积是0.954 (μ-3σ,μ+3σ)区间的面积是0.997 而正态分布...

【求解】高中数学,正态分布题设随机变量ζ~N(2,4),则D(ζ\/2)等于多...
因为ζ~N(2,4),所以E(ζ)==2,D(ζ)==4 由方差性质:D(ax+b)=a^2D(x)所以D(ζ\/2)=1\/4D(ζ)=1

正态分布问题
1)x样本均值=2.125,样本数为16 置信度为90%的标准正态分布临界值为1.645 总体均值μ的置信度为90%的置信区间为(2.125-1.645*0.01\/16^0.5,2.125+1.645*0.01\/16^0.5)(2.121,2.129)2)x样本均值=2.125,样本方差=0.000293,样本数为16 置信度为90%的t(15)分布临界值为2....

相似回答