设等差数列{An}满足A3=5 A10=-9 求{An}的通项公式
an=a3+(n-3)d =5-2(n-3)=-2n+11
设等差数列{an}满足a3=5,a10=-9求{an}的前n项和Sn及Sn最大值
解:a10-a3=7d=-9-5=-14 d=-2, a1=a3-2d=9 an=-2n+11 Sn=(a1+an)n\/2 =(9-2n+11)n\/2 =-n²+10n Sn=-(n-5)²+25 所以n=5时Sn(Max)
设等差数列{an}满足a3=5,a10=-9,求{an}的前n项和Sn及使得Sn最大的序号n...
a10=a3+7d -9=5+7d 从而d=-2 an=a3+(n-3)d=5-2(n-3)=-2n+11 Sn=(首项+末项)×项数÷2 =(9-2n+11)n\/2=-n²+10n 可通过抛物线对称轴求最值。
设等差数列{an}满足a3=5,a10=-9.(1)求{an}的通项公式;(2)求{an}的前...
(1)∵等差数列{an}满足a3=5,a10=-9,∴公差d=a10?a310?3=?9?57=-2,∴a1=5-2d=9∴{an}的通项公式为an=9-2(n-1)=-2n+11;(2)由(1)知a1=9,an=-2n+11,∴{an}的前n项和Sn=n(a1+an)2=n(9?2n+11)2=-n2+10n ...
设等差数列{an}满足a3=5,a10=-9. (1)求{an}的通项公式, (2)求数列...
d=(-9-5)\/(10-3)=-2 an=a3-2(n-3)=5-2n+6 =11-2n a1=9 Sn=n*(9+11-2n)\/2 =-n^2+10n n=5时,Sn有最大值为25
设等差数列{an}满足a3=5,a10=-9.(Ⅰ)求{an}的通项公式;(Ⅱ)求{an}...
(1)由an=a1+(n-1)d及a3=5,a10=-9得a1+9d=-9,a1+2d=5解得d=-2,a1=9,数列{an}的通项公式为an=11-2n(2)由(1)知Sn=na1+n(n?1)2d=10n-n2.因为Sn=-(n-5)2+25.所以n=5时,Sn取得最大值.
数列{an}为等差数列,且满足a3=5,a10=-9,求an通项公式
a3=a1+2d……① a10=a1+9d……② ②-①=a10-a3=-9-5=-14=(9-2)d=7d ∴d=﹣2 a1=a3-2d=5-2(-2)=9 an=a1+(n-1)d=9+(-2)(n-1)=11-2n
设等差数列{an}满足a3=5,a10=-9
(1)a3=5,a10= -9,∴公差d=(a10-a3)\/7= -2,通项公式an=a3+(n-3)d =5-2(n-3)= -2n+11,n∈N*.(2)由(1)可知,在等差数列{an}中,首项a1=9,公差d= -2,∴前n项和Sn=na1+n(n-1)d\/2 = -n²+10n,n∈N*.令an≥0,a(n+1) ≤0,n∈N*,得n=5...
设等差数列【An】满足A3=5,A10=-9,求通项公式,前n的和Sn及最大的序号...
A1+2d=5 A1+9d=-9 得d=-2 A1=9 An=9-2(n-1)=10-2n Sn=9n-2(n-1)*n\/2 =9n-(n^2-n)=10n-n^2
等差数列{an}满足a3=5,a10=-9,
∴公差d=(a10-a3)\/7=-2,通项公式an=a3+(n-3)d =5-2(n-3)=-2n+11,n∈n*.(2)由(1)可知,在等差数列{an}中,首项a1=9,公差d=-2,∴前n项和sn=na1+n(n-1)d\/2 =-n²+10n,n∈n*.令an≥0,a(n+1)≤0,n∈n*,得n=5,∴当sn取最大值时,序号n=5....