请问排列组合里面隔板法是什么意思怎么用?最好举个列子,谢谢!

如题所述

在排列组合中,对于将不可分辨的球装入到可以分辨的盒子中而求装入方法数的问题,常用隔板法。 
例1. 求方程X+Y+Z=10的正整数解的个数。 
[分析]将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z之值(如下图)。则隔法与解的个数之间建立了一一对立关系,故解的个数为C92=36(个)。实际运用隔板法解题时,在确定球数、如何插隔板等问题上形成了一些技巧。下面举例说明。 
技巧一:添加球数用隔板法。              ○ ○ ○∣○ ○ ○∣○ ○ ○ ○ 
例2. 求方程X+Y+Z=10的非负整数解的个数。 
[分析]注意到x、y、z可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了,怎么办呢?只要添加三个球,给x、y、z各一个球。这样原问题就转化为求X+Y+Z=13的正整数解的个数了,故解的个数为C122=66(个)。 
[点评]本例通过添加球数,将问题转化为如例1中的典型隔板法问题。 技巧二:减少球数用隔板法: 
例3. 将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。 
解法1:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,剩下14个球,有1种方法;再把剩下的球分成4组,每组至少1个,

会员限时特惠最后一天,文档免下载券特权立即送

由例1知方法有C133=286(种)。 
解法2:第一步先在编号1,2,3,4的四个盒子内分别放1,2,3,4个球,剩下10个球,有1种方法;第二步把剩下的10个相同的球放入编号为1,2,3,4的盒子里,由例2知方法有C133=286(种)。 [点评] 
两种解法均通过减少球数将问题转化为例1、例2中的典型问题。 技巧三:先后插入用隔板法。 
例4. 为宣传党的十六大会议精神,一文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? [分析] 
记两个小品节目分别为A、B。先排A节目。根据A节目前后的歌舞节目数目考虑方法数,相当于把4个球分成两堆,由例2知有C51种方法。这一步完成后就有5个节目了。再考虑需加入的B节目前后的节目数,同理知有C61种方法。故由分步计数原理知,方法共有C51* C61 (种)。 [点评] 
对本题所需插入的两个隔板采取先后依次插入的方法,使问题得到巧妙解决。
温馨提示:内容为网友见解,仅供参考
无其他回答

请问排列组合里面隔板法是什么意思怎么用?最好举个列子,谢谢!
在排列组合中,对于将不可分辨的球装入到可以分辨的盒子中而求装入方法数的问题,常用隔板法。 例1. 求方程X+Y+Z=10的正整数解的个数。 [分析]将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三...

什么叫隔板法 隔板法是什么意思
1、隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法。在排列组合中,对于将不可分辨的球装入到可以分辨的盒子中而求装入方法数的问题,常用隔板法。2、隔板法就是把m个相同单元分配成n组。这样m个单元中间有m-1个空格,分成n组需要n-1块隔板,所以就是c(m-1,n-1)种...

排列组合中的隔板法是什么?
隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法 例:有橘子苹果梨若干,从中随意取出四个,问共有多少种不同取法?问题等价于有四个水果篮,将其分为三组向里面加入不同水果,且允许篮子为空 分为三组需要2个隔板,将水果篮与隔板并排 ,隔板共有4+2个放置位置,故有C(4...

高中数学排列组合中的隔板法是什么?求讲解
解析:将20个小球分成三组需要两块隔板,因为允许有盒子为空,不符合隔板法的原理,那就人为的再加上3个小球,保证每个盒子都至少分到一个小球,那就符合隔板法的要求了。然后就变成待分小球总数为23个,球中间有22个空档,需要在这22个空档里加入2个隔板来分隔为3份,共有C(22,2)=231种不同...

排列组合隔板法是什么意思?为什么可以看成是隔板和空的关系进行组合呢...
排列的隔板法,其实就是一个可重排列的问题了,隔板是相同的,在计算时要去掉重复计算的就行。比如a个人从m个入口进站,有多少种不同的进站方法,就是一个可重排列的问题,可以采用隔板法了。m个站口相当于隔板了吧,结果是(a+m)!\/m!,m是重复的,所以应当除以m!的。

排列组合问题里什么时候会用到隔板法?请举例说明
隔板法要求是把没有区别的几个“球”分成有序的几堆。由于“球”没区别,所以各堆之间只能体现数目,无法体现是哪个球。其方法有二。1、不允许有空堆。例:x+y+z=10的正整数解。9个空中放两个板成为三份。2、允许有空堆。例:x+y+z=10的非负整数解。10个“球”和两个板占的12个位置中...

什么叫隔板法 隔板法是什么意思
隔板法是一种组合数学中的经典计数方法,主要用于解决相同物品的分配问题。其基本思想是通过在物品之间插入隔板来划分不同的组合方式。隔板法的核心在于将相同物品视为一个整体,并在整体内部进行划分。以n个相同的物品分给m个人为例,我们可以将这n个物品排列成一行,然后在它们之间插入m-1个隔板,将...

排列组合隔板法是什么?
排列组合隔板法是指利用假定的隔板解决相同元素的分配问题。题干标准形式一般表述为“把n个相同的元素分给m个不同的对象,每个对象至少1个元素,问有多少种不同的分法”,为使每个对象至少分一个,先去掉n个连续相同元素两端的空隙,用隔板的方法在元素之间形成的(n-1)个空隙中插入(m-1)个隔板,...

排列组合隔板法怎么用
在排列组合问题中,隔板法是一种有用的工具,用于处理将不可区分的元素分组的情况。其基本原理是通过在n个元素之间插入(b-1)个隔板来形成b组,这里的隔板不考虑顺序,只计算插入的位置组合。当面对如何将m个相同单元分配到n个组的问题时,我们可以计算出C(m-1, n-1)种方法,前提是所有单元必须...

隔板法原理解释是什么?
隔板法原理解释是在n个元素间的(n-1)个空中插入k个板,可以把n个元素分成k+1组的方法。隔板法必须满足n个元素必须互不相异和分成的组别彼此相异。隔板法是某些元素不相邻的排列组合题,即不邻问题,可采用插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不...

相似回答