分式应用题:
两条船分别从河的两岸同时开出,它们的速度是固定的,第一次相遇在距离一侧河岸700米处,然后继续前进,都到达对岸后立即返回,第二次相遇在距离另一侧河岸400米处,问河有多宽?(船到岸后掉头的时间不计)
设置河的宽度为X,两船分别为A船和B船。
可得:
假设第一次A行驶700,则B在相同时间行驶X-700
这样第二次A的行驶路程为X-700+400=X-300
B的行使路程为700+X-400=X+300
设A的速度为a,B的速度为b,可得
700/a==(X-700)/b
(X-300)/a=(X+300)/b
解得X=1700
即河的宽度为1700米。
或者:
因为速度不变,所以第一次相遇时,两船所行的距离和为1倍河宽,当第二次相遇时,两船所行的距离和为3倍的河宽,从A岸出发的轮船第一次相遇时行了700米,所以从A岸出发的轮船第二次相遇时行了3×700=2100米,设河宽为X米,根据题意得:
X+400=2100
解得: X=1700
答:河宽为1700米。
选择题:
1. 计算的结果是( )
A. B. C. D.
2已知:, ,那么等于( )
A.4 B. C. 0 D.
3.分式,,的最简公分母是( )
A. 12abc B.-12abc C. D.
1/X+2/Y+3/Z=5,3/X+2/Y+1/Z=7,则1/X+1/Y+1/Z等于多少?
答案:1/X+2/Y+3/Z=5,3/X+2/Y+1/Z=7
两个式子相加
得出4/X+4/Y+4/Z=12
所以
1/X+1/Y+1/Z=3
初二数学《分式》能力测试题
一、填空题
1、请你写一个只含有字母x(数字不限)的分式(要求:(1)x取任何有理数时,分式有意义;(2)此代数式恒为负)___________________。
2、已知x为整数,且 为整数,则所有符合条件的x的值的和是____________。
3、观察下列各式:
, ; ; ……想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律为______________。
4、已知x+ ,则x2+ 的值是____________________。
5、已知ax=3,则 的值是_____________________。
6、已知 有意义,则x的取值范围是_________________。
7、(1)观察下列各式:
; ; ; ……
由此可推断 =____________________。
(2)请猜想能表示(1)的特点的一般规律,用含字m的等式表示出来,并证明(m表示整数)
(3)请用(2)中的规律计算
二、阅读理解
1、请你阅读下列计算过程,再回答所提出的问题:
题目计算
解:原式= (A)
= (B)
=x-3-3(x+1) (C)
=-2x-6 (D)
(1)上述计算过程中,从哪一步开始出现错误:_______________
(2)从B到C是否正确,若不正确,错误的原因是__________________________
(3)请你正确解答。
2、请先阅读下列一段文字,然后解答问题:
初中数学课本中有这样一段叙述:“要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零,”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以。
问题:甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同)甲每次购买粮食100kg,乙每次购粮用去100元。
(1)设第一、第二次购粮单价分别为x元/kg和y元/kg,用含x、y的代数式表示:甲两次购买粮食共需付粮款______________元,乙两次共购买____________kg粮食。叵甲两次购粮的平均单价为每千克Q1元,乙两次购粮的平均单价和每千克Q2元,则Q1=_________,Q2=___________。
(2)若规定:谁两次购粮的平均单价低,谁的购粮方式就更合算,请你判断甲、乙两人的购粮方式哪一个更合算,并说明理由。
3、若方程 的解是正数,求a的取值范围。
对这道题,有位同学作了如下解答:
解:去分母得:2x+a=-x+2
化简得:3x=2-a
∴ x=
欲使方程的根为正数,必须 >0
解得a<2
∴ 当a<2时,方程 的是正数。
上述解法是否有误,若有错误请指出错误的原因,并写出正确解法,若无错误,说明第一步解决的依据。
4、阅读下列材料:
∵ )
)
……
∴
= )
解答下列问题:
(1)在和式 中,第5项为____________,第n项为___________,上述求和的想法是:通过运用_______________法则,将和式中的各分数转化为两个数之差,使得首末两面外的中间各项可以____________,从而达到求和目的。
(2)利用上述结论计算
5、阅读下列解题过程,并填空:
题目:解方程
解:方程两边同时乘以(x+2)(x-2)…… (A)
(x+2)(x-2)[ •(x+2)(x-2)
化简得: (x-2)+4x=2(x+2)…… (B)
去括号,移项得x-2+4x-2x-4=0…… (C)
解这个方程得 x=2…… (D)
∴ x=2是原方程的解…… (E)
问题:(1)上述过程是否正确?答__________________
(2)若有错误,错在第__________步
(3)该步错误的原因是__________________
(4)该步改正为_______________________
三、已知矩形的长为7cm,宽5cm,(1)请你设计三种不同的方案,使这个矩形的面积增加1cm2;(2)不改变矩形的周长,能否使矩形的面积增加2cm2。
四、分子为1的真分数叫做“单位分数”,我们注意到某些真分数可以写成两个单位分数的和,例如:
(1)把 写成两个单位分数的和。
(2)研究真分数 ,对于某些x的值,它可以写成两个单位分数的和,例如当x=42时, ,你还能找出多少x的值,使得 可以写成两个单位分数的和?
五、解答下列各题
1、已知分式 的值是a,如果用x、y的相反数代入这个分式所得的值为b,问a、b有什么关系?为什么?
2、从火车上下来的两个旅客,他们沿着一个方向到一个地点去,第一个旅客一半路程以速度a行驶,另一半路程以速度b行走,第二个旅客一半时间以速度a行走,另一半时间以速度b行走,车站到目的地的距离为s。
(1)试表示两个旅客从火车站到目的地所需时间t1、t2。
(2)哪个旅客先到达目的地?
3、K为何值时,方程8x-5=kx+4有正整数解,并求出所有解的和。
4、有一大捆粗细均匀的电线,怎样做比较简单地能够确定其总长度的值。
5、观察以下式子:
请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论。
6、什么样的两个数,它们的和等于它们的积?你大概马上会想到2+2=2×2,其实这样的两个数还有很多,例如3+ ,请你再写出一些这样的两个数,你能从中发现一些规律吗?
温馨提示:内容为网友见解,仅供参考
初二数学的难点
初二上学期没什么难的。下学期:分式:这个不怎么难,就是做混合运算的时候要仔细。还有分式方程记得检验,这章只要因式分解的基础扎实,很简单。反比例函数:也没啥难,这章最难的就是一次函数、反比例函数画在一个坐标系中,问当x(横坐标)是多少时一次函数大于反比例函数,这个一般有两段 勾股定理...
初二数学八年级下册分式方程应用题难点解法和分式解法
取值范围 ,可能产生 增根 ).验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根是 曾根 ,则原方程无解。如果分式本身约了分,也要带进去检验。在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验是否符合题意 ...
初二“下半年”数学几道可怕的分式题,求高手!好的追加50分!!_百度...
2:a² + b² - 6ab = 0,两边同时加上2ab,得a+b的平方=8ab,同时减去2ab,得a-b的平方=4ab 两式相除得所求值为2 3: 已知等式两边同时乘以ab得,a+b=4ab,代入所求分式求得结果为1 4:等式两边同时除以x,5x-3- 5\/x=0 5x-5\/x=3 x-1\/x=3\/5 两边...
初二下期数学分式方程
问题1:假设八年级的学生总数为P 如果学校给八年级学生每人购买一枝。那只能按零售价付款,用120元:因此学校八年级的学生总数肯定在300枝以下(包括300枝),即 P<=300 如果多购买60枝,那么可以按批发价付款,同样用120元:因此学校八年级的学生总数肯定在(301-60)枝以上,即 P>=241 从而得到,...
初二下册数学分式题,求解答
第一题:简便算法是直接假设y=3,x=4带入求解。标准算法是原式分子分母同除以X^2。即得到只含有Y\/X的式子。然后将Y\/X=3\/4带入求解。第二题:如果是初二的题的话,前面已知可能应该是减而不是加。如果是1\/b-1\/a=4,直接将后式分子分母同除以ab。整理后带入1\/b-1\/a=4即可求解。如果题目...
初二数学难题(分式)
设小明单独完成这项任务需要X小时,则小亮需要【1\/(4+5-1)】-X小时。【1-(1\/X+1\/8-1\/X)x4】÷(1\/8-1\/X)=5
帮我找一些数学初二下册的"分式方程"的难题目 谢谢
分式方程要检验 经检验,x=-3\/2是方程的解 2\/x-1=4\/x^2-1 两边乘(x+1)(x-1)2(x+1)=4 2x+2=4 2x=2 x=1 分式方程要检验 经检验,x=1使分母为0,是增根,舍去 所以原方程无解 5\/x^2+x - 1\/x^2-x=0 两边乘x(x+1)(x-1)5(x-1)-(x+1)=0 5x-5-x-1=0 4x=...
如何解分式(初二下学期)详细点
2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)=(x+3y)(x^4-5x^2y^2+4y^4)=(x+3y)(x^2-4y^2)(x^2-y^2)=(x+3y)(...
初二下学期数学分式
1\/116 由题已知可得-y+1\/y=3→y^4+1\/(y^4)=119→原式的值为1\/116
初二下学期数学分式方程题急求解!!!
解:1\/a+1\/b=(a+b)\/ab=1\/a+b 得(a+b)^2=ab 所以b\/a+a\/b =(a^2+b^2)\/ab =((a+b)^2-2ab)\/ab -1