抽屉原理如何能理解深刻

如题所述

抽屉原理
一、 知识要点
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。
原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。
原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。
其中 k= (当n能整除m时)
〔 〕+1 (当n不能整除m时)
(〔 〕表示不大于 的最大整数,即 的整数部分)
原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

二、 应用抽屉原理解题的步骤
第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。
第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。
第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业
求证:这5名学生中,至少有两个人在做同一科作业。
证明:将5名学生看作5个苹果
将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉
由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。
即至少有两名学生在做同一科的作业。

例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
解:把3种颜色看作3个抽屉
若要符合题意,则小球的数目必须大于3
大于3的最小数字是4
故至少取出4个小球才能符合要求
答:最少要取出4个球。

例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
解:把50名学生看作50个抽屉,把书看成苹果
根据原理1,书的数目要比学生的人数多
即书至少需要50+1=51本
答:最少需要51本。

例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。
解:把这条小路分成每段1米长,共100段
每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果
于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果
即至少有一段有两棵或两棵以上的树

例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本
试证明:必有两个学生所借的书的类型相同
证明:若学生只借一本书,则不同的类型有A、B、C、D四种
若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种
共有10种类型
把这10种类型看作10个“抽屉”
把11个学生看作11个“苹果”
如果谁借哪种类型的书,就进入哪个抽屉
由抽屉原理,至少有两个学生,他们所借的书的类型相同

例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜
试证明:一定有两个运动员积分相同
证明:设每胜一局得一分
由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能
以这49种可能得分的情况为49个抽屉
现有50名运动员得分
则一定有两名运动员得分相同

例7、 体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?
解题关键:利用抽屉原理2。
解:根据规定,多有同学拿球的配组方式共有以下9种:
{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}
以这9种配组方式制造9个抽屉
将这50个同学看作苹果
=5.5……5
由抽屉原理2k=〔 〕+1可得,至少有6人,他们所拿的球类是完全
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-04-01
就是把要放进的东西+1

抽屉原理——看完这篇你就都懂了(上)
理解抽屉原理 抽屉原理的核心在于“即便在最不利的情况下”,也能保证某个抽屉(分类)满足一定条件。比如,如果在n个抽屉中放多于n个苹果,那么至少有一个抽屉的苹果数不低于2,这个结论适用于任何放置苹果的策略。应用抽屉原理 处理抽屉原理问题时,关键是识别出“苹果”(元素)和“抽屉”(分类),...

抽屉原理如何能理解深刻
原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。二、 应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,...

什么是抽屉原理
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不...

抽屉原理是什么意思?
抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一...

抽屉原则举例
抽屉原则的基本思想是,如果某个集合(比如苹果)的元素数量超过了容器(抽屉)的数量,那么至少有一个容器会包含多于一个元素。这不仅仅是一个关于苹果和抽屉的游戏,它是一个广泛应用在数学、计算机科学乃至现实生活中的基本原理。例如,在学习概率或者算法设计时,抽屉原则常常被用来解决最优化问题。当...

关于生活中的数学问题
在六人集会问题中,"证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识",通过连线的颜色,同样体现了抽屉原理的应用,无论哪种情况,都可以得出结论。抽屉原理在数学问题中的应用广泛,它不仅帮助我们理解生活中的现象,还为解决许多存在性问题提供了简便的方法。实际上,六...

六年级下册的抽屉原理有什么巧妙的方法教学生?
用几个盒子和几个球{或其他材料}作为教具 现场演示一边,说明其中道理 最好就让学生自己去探究抽屉原理中的奥秘 然后老师再指点迷津……印象会很深刻的 想当初我们班之所以学的那么好,就是因为老师是这样实践教学的

至少取多少个球,才能保证取到两个颜色相同的球。
此题不全,题目考察抽屉原理,共有两问,解答如下:1、4+1=5(个);答:至少取5个球,可以保证取到两个颜色相同的球。2、3×4+1=13(个);答:至少取13个球,可以保证取到4个颜色相同的球。故答案为:5,13。

一个鸽巢原理问题
添加到搜藏 返回百度百科首页 编辑词条 鸽巢原理 鸽巢原理也叫抽屉原理,是Ramsey定理的特例 。 它的简单形式是 :把n+1个物体放入n个盒子里,则至少有一个盒子里含有两个或两个以上的物体 。 下面再给出Ramsey定理的简单形式: 设p,q是正整数,p,q>= 2,则存在最小的正整数R(p,q),使得当n>=R(p,q)时...

公务员考试中数学运算与小学奥数的关系,以及如何提高数学运算的能力...
一、准确理解和牢固掌握各种运算所需的概念、性质、公式、法则和一些常用数据;对于概念、性质、公式、法则的理解深刻的程度直接影响方法的选择与运算速度的快慢。概念模糊,公式、法则含混,必定影响运算的准确性。为了提高运算的速度,熟记一些常用的数据仍是必要的。如20以内的自然数的平方数,简单的勾股数,特殊三角函数值...

相似回答