如题所述
1\/2+1\/6+1\/12+1\/20+1\/30=简便计算?
②再把原式化为同分母60计算如下:1\/2+1\/6+1\/12+1\/20+1\/30 =30\/60+10\/60+5\/60+3\/60+2\/60 =(30+10+5+3+2)\/60 =50\/60 =5\/6
简便计算1\/2+1\/6+1\/12+1\/20+1\/30+1\/42?
原式=6\/7 解题分析 将分母6、12、20、30、42分解为2×3、3×4、4×5、5×6、6×7,然后再化简。1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/2+1\/(2×3)+1\/(3×4)+1\/(5×6)+1\/(6×7)=1\/2+(1\/2-1\/3)+(1\/3-1\/4)+(1\/5-1\/6)+(1\/6-1\/7)=1\/2+1...
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42的简便运算?
原=1\/2+1\/6+1\/12+1\/42+1\/20+1\/30 =6\/12+2\/12+1\/12+1\/42+3\/60+2\/60 =9\/12+1\/42+5\/60 =9\/12+1\/42+1\/12 =10\/12+1\/42 =70\/84+2\/84 =72\/84 =6\/7
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42的简便运算。
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)+1\/(6x7)=(1 -1\/2) +(1\/2-1\/3)+...+(1\/6-1\/7)=1 -1\/7 =6\/7 异分母分数相加:1、异分母分数相加,先通分,再按同分母分数相加法去计算,最后要化成最简分数。例1:3\/4+5\/7...
二分之一加6分之一加12分之一加20分之一加30分之一加42分之一怎样简便...
解:1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)+1\/(6x7)=1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6+1\/6-1\/7 =1+(1\/2-1\/2)+(1\/3-1\/3)+(1\/4-1\/4)+(1\/5-1\/5)+(1\/6-1\/6)-1\/7 =1-1\/7 =6\/...
1\/2+1\/6+1\/12+1\/20+1\/30=简便计算。
1\/2+1\/6+1\/12+1\/20+1\/30简便计算结果为5\/6。解:1\/2+1\/6+1\/12+1\/20+1\/30 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)=(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+(1\/5-1\/6)=1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6 =1-1\/6 ...
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42怎么算
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)+1\/(6x7)=(1 -1\/2) +(1\/2-1\/3)+...+(1\/6-1\/7)=1 -1\/7 =6\/7
简便计算1\/2+1\/6+1\/12+...+1\/?
1\/2+1\/6+1\/12+1\/20+1\/30+.+1\/9900简便运算过程如 1\/2+1\/6+1\/12+1\/20+1\/30+...+1\/9900 =1\/1*2+1\/2*3+1\/3*4+1\/4*5+1\/5*6+...+1\/99*100 =1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6+1\/6-...-1\/99+1\/99-1\/100 =1-1\/100 =99\/100 所以1...
2分之一加6分之一加12分之一加20分之一加30分之一加42分之一加56分之...
裂项法:1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72 =1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6+1\/6-1\/7+1\/7-1\/8+1\/8+1\/9 =1-1\/9 =8\/9
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90怎么简便计算?
由题意得:1\/6=1\/[2(2+1)]、1\/12=1\/[3(3+1)]、1\/20=1\/[4(4+1)]、1\/30=1\/[5(5+1)]、依次可以表达为1\/[n(n+1)]的形式。所以可得:1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90 =1\/(1*2)+1\/(2*3)+1\/(3*4)+1\/(4*5)+1\/(5*6)+1\/(6...