1/2+1/6+1/12+1/20+1/30+1/42= 2+4+6+...+2010= (5/9-5/6+1/4)÷(-1/36)= (-19 18/19)*38= 都用简便计算

如题所述

第1个回答  2011-07-24
1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+1/6*7=1/2(1+1/3)+1/4(1/3+1/5)+1/6(1/5+1/7)=2/3+2/15+2/35=6/7
首先这是个等差数列,公差为2首项为2 ,2010为第n项,则2+(n-1)*2=2010,计算的n=1005, 则2+4+6+……+2010=1005*(2+2010)/2=1011030
后面的式子看不懂
第2个回答  2011-07-24
1/2+1/6+1/12+1/20+1/30+1/42
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7

2+4+6+...+2010
=2×(1+2+3+……+1005)
=2× [ (1+1004)×1004÷2 +1005 ]
=2× [ 1005×502+1005 ]
=2×1005×503
=2010×503
= 1011030

(5/9-5/6+1/4)÷(-1/36)
=(5/9)×(-36)-(5/6)×(-36)+(1/4)×(-36)
=-20+30-9
=10-9
=1

(-19 18/19)*38
=-1918×38÷19
=-1918×2
=-3836本回答被提问者采纳

1\/2+1\/6+1\/12+1\/20+1\/30=简便计算?
②再把原式化为同分母60计算如下:1\/2+1\/6+1\/12+1\/20+1\/30 =30\/60+10\/60+5\/60+3\/60+2\/60 =(30+10+5+3+2)\/60 =50\/60 =5\/6

简便计算1\/2+1\/6+1\/12+1\/20+1\/30+1\/42?
原式=6\/7 解题分析 将分母6、12、20、30、42分解为2×3、3×4、4×5、5×6、6×7,然后再化简。1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/2+1\/(2×3)+1\/(3×4)+1\/(5×6)+1\/(6×7)=1\/2+(1\/2-1\/3)+(1\/3-1\/4)+(1\/5-1\/6)+(1\/6-1\/7)=1\/2+1...

1\/2+1\/6+1\/12+1\/20+1\/30+1\/42的简便运算?
原=1\/2+1\/6+1\/12+1\/42+1\/20+1\/30 =6\/12+2\/12+1\/12+1\/42+3\/60+2\/60 =9\/12+1\/42+5\/60 =9\/12+1\/42+1\/12 =10\/12+1\/42 =70\/84+2\/84 =72\/84 =6\/7

1\/2+1\/6+1\/12+1\/20+1\/30+1\/42的简便运算。
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)+1\/(6x7)=(1 -1\/2) +(1\/2-1\/3)+...+(1\/6-1\/7)=1 -1\/7 =6\/7 异分母分数相加:1、异分母分数相加,先通分,再按同分母分数相加法去计算,最后要化成最简分数。例1:3\/4+5\/7...

二分之一加6分之一加12分之一加20分之一加30分之一加42分之一怎样简便...
解:1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)+1\/(6x7)=1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6+1\/6-1\/7 =1+(1\/2-1\/2)+(1\/3-1\/3)+(1\/4-1\/4)+(1\/5-1\/5)+(1\/6-1\/6)-1\/7 =1-1\/7 =6\/...

1\/2+1\/6+1\/12+1\/20+1\/30=简便计算。
1\/2+1\/6+1\/12+1\/20+1\/30简便计算结果为5\/6。解:1\/2+1\/6+1\/12+1\/20+1\/30 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)=(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)+(1\/5-1\/6)=1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6 =1-1\/6 ...

1\/2+1\/6+1\/12+1\/20+1\/30+1\/42怎么算
1\/2+1\/6+1\/12+1\/20+1\/30+1\/42 =1\/(1x2)+1\/(2x3)+1\/(3x4)+1\/(4x5)+1\/(5x6)+1\/(6x7)=(1 -1\/2) +(1\/2-1\/3)+...+(1\/6-1\/7)=1 -1\/7 =6\/7

简便计算1\/2+1\/6+1\/12+...+1\/?
1\/2+1\/6+1\/12+1\/20+1\/30+.+1\/9900简便运算过程如 1\/2+1\/6+1\/12+1\/20+1\/30+...+1\/9900 =1\/1*2+1\/2*3+1\/3*4+1\/4*5+1\/5*6+...+1\/99*100 =1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6+1\/6-...-1\/99+1\/99-1\/100 =1-1\/100 =99\/100 所以1...

2分之一加6分之一加12分之一加20分之一加30分之一加42分之一加56分之...
裂项法:1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72 =1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5-1\/6+1\/6-1\/7+1\/7-1\/8+1\/8+1\/9 =1-1\/9 =8\/9

1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90怎么简便计算?
由题意得:1\/6=1\/[2(2+1)]、1\/12=1\/[3(3+1)]、1\/20=1\/[4(4+1)]、1\/30=1\/[5(5+1)]、依次可以表达为1\/[n(n+1)]的形式。所以可得:1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90 =1\/(1*2)+1\/(2*3)+1\/(3*4)+1\/(4*5)+1\/(5*6)+1\/(6...

相似回答