√(1+x^2 )的 不定积分怎么求?(根号下1加上x的平方)

如题所述

∫√(1+x^2 )dx
令x=tant,
原式=∫sect·dtant (注:本式还等于∫sec³tdt)

=sect·tant-∫tantdsect
=sect·tant-∫tant·tantsectdt
=sect·tant-∫(sec²t-1)sectdt
=sect·tant-∫(sec³t-sect)dt
=sect·tant-∫sec³tdt+∫sectdt
=sect·tant-∫sect·dtant +∫sectdt
所以
2×∫sect·dtant=sect·tant-∫sect·dt
=sect·tant-ln|sect+tant|+2c
=x√(1+x²)-ln|x+√(1+x²)|+2c
即
原式=1/2x√(1+x²)-1/2ln|x+√(1+x²)|+c
温馨提示:内容为网友见解,仅供参考
第1个回答  2019-12-21
x = sinθ,dx = cosθ dθ ∫ √(1 - x²) dx = ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ = ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + C = (arcsinx)/2 + (sinθcosθ)/2 + C = (arcsin
第2个回答  2021-01-10

第3个回答  2018-01-14
"所以"那一步后面,两个三角函数之间应该是加号不是减号
第4个回答  2020-03-23
原式=∫sect·dtant (注:本式还等于∫sec³tdt)
=sect·tant-∫tantdsect
=sect·tant-∫tant·tantsectdt
=sect·tant-∫(sec²t-1)sectdt
=sect·tant-∫(sec³t-sect)dt
=sect·tant-∫sec³tdt+∫sectdt
=sect·tant-∫sect·dtant +∫sectdt
所以
2×∫sect·dtant=sect·tant+∫sect·dt
=sect·tant+ln|sect+tant|+2c
=x√(1+x²)+ln|x+√(1+x²)|+2c

原式=1/2x√(1+x²)+1/2ln|x+√(1+x²)|+c
相似回答