求证:cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2

如题

cosA+cosB+cosC=2cos(A-B)/2cos(A+B)/2+cosC

=2cos(A-B)/2sin(π-A-B)/2+1-2sin^2(C/2)
=2cos(A-B)/2sinC/2+1-2sin^2(C/2)
=2sinC/2(cos(A-B)/2-sinC/2)+1
=2sinC/2(cos(A-B)/2-cos(A+B)/2)+1
=sinC/2*2sinA/2*sinB/2+1
=1+4sinA/2sinB/2sinC/2
好难打啊,可累死我了,上大学还得做高中的题,呼呼`千万给我分哦~
温馨提示:内容为网友见解,仅供参考
第1个回答  2008-08-01
楼上好棒,其实我也是这么想的,和差化积,积化和差是很好用的,不过貌似现在高考要求不高

求证:cosA+cosB+cosC=1+4sinA\/2sinB\/2sinC\/2
cosA+cosB+cosC=2cos(A-B)\/2cos(A+B)\/2+cosC =2cos(A-B)\/2sin(π-A-B)\/2+1-2sin^2(C\/2)=2cos(A-B)\/2sinC\/2+1-2sin^2(C\/2)=2sinC\/2(cos(A-B)\/2-sinC\/2)+1 =2sinC\/2(cos(A-B)\/2-cos(A+B)\/2)+1 =sinC\/2*2sinA\/2*sinB\/2+1 =1+4sinA\/2sinB\/2si...

...求证:cosA+cosB+cosC=1+4sinA\/2sinB\/2sinC\/2
用倒的公式:cos(a+b)=cosa*cosb-sina*sinb cosa=1-cos(a*a\/4)

△ABC中,求证;cosA+cosB+cosC=1+4sinA\/2 * sinB\/2 * sinC\/2
cosA+cosB+cosC=cosA+cosB+cos(派-(A+B))=cosA+cosB-cos(A+B)=2cos(A+B)\/2*cos(A-B)\/2+1-2cos^2(A+B)\/2 =1+2cos(A+B)\/2*(cos(A-B)\/2-cos(A+B)\/2)=1+4cos(A+B)\/2*(sinA\/2+sinB\/2)=1+4sinA\/2*sinB\/2*sinC\/2 ...

求证:A+B+C=π
证明:∵cosA+cosB+cosC=1+4sinA\/2sinB\/2sinC\/2 ∴sin²A\/2+sin²B\/2+sin²C\/2+2sinA\/2sinB\/2sinC\/2-1=0 把上式看成关于sinA\/2的方程,可用方程思想求解 x²+2xsinB\/2sinC\/2+sin²B\/2+sin²C\/2-1=0有正根 判别式△=4sin²B\/2sin&sup...

A,B,C都是锐角,cosA+cosB+cosC=1+4sinA\/2sinB\/2sinC\/2,求A+B+C=180
cosA+cosB+cosC=1+4sinA\/2 * sinB\/2 * sinC\/2 2cos(A\/2+B\/2)cos(A\/2-B\/2)+1-2(sinC\/2)^2=1+4sinA\/2*sinB\/2*sinC\/2 cos(A\/2+B\/2)cos(A\/2-B\/2)-(sinC\/2)^2=2sinA\/2*sinB\/2*sinC\/2 cos(A\/2+B\/2)cos(A\/2-B\/2)-(sinC\/2)^2=sinC\/2*[cos(B\/2-A\/2)...

如何证明 在三角形abc中,cosa+cosb+cosc=1+r\/r
证明:先证一个三角恒等式 sinA+sinB+sinC=4cos(A\/2)cos(B\/2)cos(C\/2)a+b+c=2p pr=S=(1\/2)absinC 用正弦定理 Rr(sinA+sinB+sinC)=2RRsinAsinBsinC 再利用三角恒等式 r\/R=4sin(A\/2)sin(B\/2)sin(C\/2)cosA+cosB+cosC=1+4sin(A\/2)sin(B\/2)sin(C\/2)cos(180-B-C)+...

解题高手来:在三角形ABC中,求证:cosA+cosB+cosC≤3\/2
=4cos[(π+π\/3)\/4]=4cos(π\/3),所以 cosA+cosB+cosC<=3cos(π\/3)=3\/2.注:仿上可证:sinA+sinB+sinC<=3√3\/2 证明二 (一元化方法)cosA+cosB+cosC=cosA+2cos[(B+C)\/2]cos[(B-C)\/2]<=cosA+2cos[(B+C)\/2]=1-2[sin(A\/2)]^2+2sin(A\/2)=-2[(sin(A\/2)-1\/...

...⊃2;B\/2+sin⊃2;C\/2=1-2sinA\/2sinB\/2sinC\/2
在△ABC中,有恒等式:cosA+cosB+cosC=1+4sin(A\/2)sin(B\/2)sin(C\/2)。∴1-2[sin(A\/2)]^2+1-2[sin(B\/2)]^2+1-2[sin(C\/2)]^2 =1+4sin(A\/2)sin(B\/2)sin(C\/2),∴-2{[sin(A\/2)]^2-[sin(B\/2)]^2-[sin(C\/2)]^2}...

在三角形ABC中,求证sinA+sinB+sinC=4cosA\/2cosB\/2cosC\/2.
+sin(B\/2)cos(A\/2))=2sinAcos(B\/2)^2+2sinBcos(A\/2)^2 ==> 4cos(A\/2)cos(B\/2)cos(C\/2)-sinA-sinB=sinA(2cos(B\/2)^2-1)+sinB(2cos(A\/2)^2-1)=sinAcosB+sinBcosA=sin(A+B)=sin(pi-A-B)=sin(A+B)==> sinA+sinB+sinC=4cos(A\/2)cos(B\/2)cos(C\/2)

在△ABC,求证sinA+sinB-cosC=4sinA\/2sinB\/2cosC\/2
∠A+∠B+∠C=180° -->sinC=sin(180°-A-B)=sin(A+B)=sinAcosB+cosAcosB 4sinA\/2sinB\/2cosC\/2=4sinA\/2sinB\/2cos(90°-A\/2-B\/2)=4sinA\/2sinB\/2sin(A\/2+B\/2)=4sinA\/2sinB\/2(sinA\/2cosB\/2+cosA\/2sinB\/2)=4sinA\/2sinA\/2sinB\/2cosB\/2+4sinA\/2cosA\/2sinB\/2sinB\/2=2...

相似回答