...a\/2+sin^2 b\/2+sin^2 c\/2=1-2sina\/2sinb\/2sinc\/2
则方法如下:在三角形中,有恒等式:cosA+cosB+cosC=1+4sin(A\/2)sin(B\/2)sin(C\/2),∴1-2[sin(A\/2)]^2+1-2[sin(B\/2)]^2+1-2[sin(C\/2)]^2 =1+4sin(A\/2)sin(B\/2)sin(C\/2),
...形ABC中,求证:sin^A\/2+sin^B\/2+sin^C\/2=1-2sinA\/2sinB\/2sinC\/2
[sin(A\/2)]^2+[sin(B\/2)]^2+[sin(C\/2)]^2=1-2sin(A\/2)sin(B\/2)sin(C\/2)若是这样,则方法如下:在三角形中,有恒等式:cosA+cosB+cosC=1+4sin(A\/2)sin(B\/2)sin(C\/2),∴1-2[sin(A\/2)]^2+1-2[sin(B\/2)]^2+1-2[sin(C...
三角形中如何证明sin^2A\/2+sin^B\/2+sin^C\/2=1-2sin\/2sinB\/2sin\/2
sin^2(A\/2)+sin^2(B\/2)+sin^2(C\/2)=1\/2(1-cosA+1-cosB+1-cosC)=1\/2(3-cosA-cosB+cos(A+B))=1\/2(2-cosA-cosB+2cos^2(A+B)\/2)=1\/2(2-2sos[(A+B)\/2]cos[(A-B)\/2]+2cos^2(A+B)\/2)=1-[cos(A+B)\/2][cos(A-B)\/2-cos(A+B)\/2]=1-2sinC\/2sinA...
...A\/2+sin⊃2;B\/2+sin⊃2;C\/2=1-2sinA\/2sinB\/2sinC\/2
∴[sin(A\/2)]^2-[sin(B\/2)]^2-[sin(C\/2)]^2 =1-2sin(A\/2)sin(B\/2)sin(C\/2)。下面证明恒等式:cosA+cosB+cosC=1+4sin(A\/2)sin(B\/2)sin(C\/2)。cosA+cosB+cosC =2cos[(A+B)\/2]cos[(A-B)\/2]+1-2[sin(C\/2)]^2 =1+...
在三角形ABC中,设sin^2(A\/2)+2sin^2(B\/2)+sin^2(C\/2)=1
解:半角的正弦公式(降幂扩角公式)sin^2(α\/2)=(1-cosα)/2 得:2sin^2(B\/2)=1-cosB sin^2(A\/2)+sin^2(C\/2)=1-1\/2(cosA+cosC)=cosB cosA+cosC=2(1-cosB)=4sin^2(B\/2)……① 在△ABC中,A+B+C=π,于是 B\/2=(π-A-C)\/2,sinB\/2=sin(π-A-C)\/2=cos(A...
在三角形ABC中,设sin^2(A\/2)+2sin^2(B\/2)+sin^2(C\/2)=1,求tan(A\/2...
解:半角的正弦公式(降幂扩角公式)sin^2(α\/2)=(1-cosα)/2 得:2sin^2(B\/2)=1-cosB sin^2(A\/2)+sin^2(C\/2)=1-1\/2(cosA+cosC)=cosB cosA+cosC=2(1-cosB)=4sin^2(B\/2)……① 在△ABC中,A+B+C=π,于是 B\/2=(π-A-C)\/2,sinB\/2=sin(π-A-C)\/2=cos(A...
在三角形ABC中,设sin^A\/2+2sin^B\/2+sin^C\/2=1求tanA\/2*tanC\/2的值
解:半角的正弦公式(降幂扩角公式)sin^2(α\/2)=(1-cosα)/2 得:2sin^2(B\/2)=1-cosB sin^2(A\/2)+sin^2(C\/2)=1-1\/2(cosA+cosC)=cosB cosA+cosC=2(1-cosB)=4sin^2(B\/2)……① 在△ABC中,A+B+C=π,于是 B\/2=(π-A-C)\/2,sinB\/2=sin(π-A-C)\/2=cos(A...
...sinA\/2sinB\/2sinC\/2 是sin(A\/2)sin(B\/2)sin(C\/2)
B+C)\/2*cos(B+C)\/2 =1 所以(sinA\/2)^2+(sinB\/2)^2+(sinC\/2)^2最小2sinA\/2sinB\/2sinC\/2最大 (sinA\/2)^2+(sinB\/2)^2+(sinC\/2)^2>=3(3次根号((sinA\/2sinB\/2sinC\/2)^2))此时sinA\/2=sinB\/2=sinC\/2 取等号A=B=C=60最大sinA\/2sinB\/2sinC\/2=1\/8 ...
在△ABC中,求证 sin^2A+sin^2B-sin^2C=2sinA*sinB8cosC
正弦定理:a\/sinA=b\/sinB=c\/sinC=2R 左=(a^2 + b^2 - c^2)\/(2R)^2 右=(2ab)\/(2R)^2 * (a^2 + b^2 - c^2)\/(2ab) = (a^2 + b^2 - c^2)\/(2R)^2 ( 用余弦定理:CosC= (a^2 + b^2 - c^2)\/(2ab) )(你那个“8”多打了吧?)
在三角形abc中,sina\/2+sinb\/2+sinc\/2
由余弦定理:a^2+b^2-2abcosc=c^2 正弦定理,边化角得 sinA^2+sinB^2-2sinAsinBcosC=sinC^2 两边各加上sinC^2得sinA^2+sinB^2+ sinC^2-2sinAsinBcosC=2sinC^2 因为sinA^2+sinB^2+ sinC^2=2 所以,2-2sinAsinBcosC=2sinC^2除2整理:cosC=sinAsinB 因为cosC=-cos(A+B)=sinA...