在△ABC中,化简sin^2(A/2)+sin^2(B/2)+sin^2(C/2)+2sinA/3sinB/2sinC/2

如题所述

在△ABC中,有恒等式:cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)
∴原式=(1-cosA)/2+(1-cosB)/2+(1-cosC)/2+2sin(A/2)sin(B/2)sin(C/2)
   =3/2-(cosA+cosB+cosC)/2+2sin(A/2)sin(B/2)sin(C/2)
   =3/2-[1+4sin(A/2)sin(B/2)sin(C/2)]/2+2sin(A/2)sin(B/2)sin(C/2)
   =1

下面给出恒等式:cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)的证明。
cosA+cosB+cosC
=(cosA+cosB)+cos(180°-A-B)
=2cos[(A+B)/2]cos[(A-B)/2]-cos(A+B)
=2cos[(A+B)/2]cos[(A-B)/2]+1-2{cos[(A+B)/2]}^2
=1+2cos[(A+B)/2]{cos[(A-B)/2]-cos[(A+B)/2]}
=1+2sin[(180°-A-B)/2][2sin(A/2)sin(B/2)]
=1+2sin(C/2)[2sin(A/2)sin(B/2)]
=1+4sin(A/2)sin(B/2)sin(C/2)
温馨提示:内容为网友见解,仅供参考
无其他回答

在三角形ABC中,设sin^2(A\/2)+2sin^2(B\/2)+sin^2(C\/2)=1
sin^2(α\/2)=(1-cosα)/2 得:2sin^2(B\/2)=1-cosB sin^2(A\/2)+sin^2(C\/2)=1-1\/2(cosA+cosC)=cosB cosA+cosC=2(1-cosB)=4sin^2(B\/2)……① 在△ABC中,A+B+C=π,于是 B\/2=(π-A-C)\/2,sinB\/2=sin(π-A-C)\/2=cos(A+C)\/2 而cosA+cosC=2cos(A+C)...

在三角形ABC中,设sin^2(A\/2)+2sin^2(B\/2)+sin^2(C\/2)=1,求tan(A\/2...
得:2sin^2(B\/2)=1-cosB sin^2(A\/2)+sin^2(C\/2)=1-1\/2(cosA+cosC)=cosB cosA+cosC=2(1-cosB)=4sin^2(B\/2)……① 在△ABC中,A+B+C=π,于是 B\/2=(π-A-C)\/2,sinB\/2=sin(π-A-C)\/2=cos(A+C)\/2 而cosA+cosC=2cos(A+C)\/2cos(A-C)\/2,代入①式化简,...

在△ABC中,求证;sin^(A\/2)+sin^(B\/2)+sin^(C\/2)=1-2sin(A\/2)sin(B\/...
由倍角公式:(sin A\/2)^2=(1-cosA)\/2,(sin B\/2)^2=(1-cosB)\/2,(sin C\/2)^2=(1-cosC)\/2。所以等式左边=3\/2-1\/2(cosA+cosB+cosC). 又因为 1-2sin(A\/2)sin(B\/2)sin(C\/2) (积化和差公式)=1-[cos (A-B)\/2 - cos (A+B)\/2]sin(C\/2)=1-[cos (A-B)\/...

在三角形ABC中,设sin^A\/2+2sin^B\/2+sin^C\/2=1求tanA\/2*tanC\/2的值
sin^2(α\/2)=(1-cosα)/2 得:2sin^2(B\/2)=1-cosB sin^2(A\/2)+sin^2(C\/2)=1-1\/2(cosA+cosC)=cosB cosA+cosC=2(1-cosB)=4sin^2(B\/2)……① 在△ABC中,A+B+C=π,于是 B\/2=(π-A-C)\/2,sinB\/2=sin(π-A-C)\/2=cos(A+C)\/2 而cosA+cosC=2cos(A+C)...

...a\/2+sin^2 b\/2+sin^2 c\/2=1-2sina\/2sinb\/2sinc\/2
]^2=1-2sin(A\/2)sin(B\/2)sin(C\/2)若是这样,则方法如下:在三角形中,有恒等式:cosA+cosB+cosC=1+4sin(A\/2)sin(B\/2)sin(C\/2),∴1-2[sin(A\/2)]^2+1-2[sin(B\/2)]^2+1-2[sin(C\/2)]^2 =1+4sin(A\/2)sin(B\/2)sin(C\/2)...

...形ABC中,求证:sin^A\/2+sin^B\/2+sin^C\/2=1-2sinA\/2sinB\/2sinC\/2
=-2+4sin(A\/2)sin(B\/2)sin(C\/2),∴[sin(A\/2)]^2+[sin(B\/2)]^2+[sin(C\/2)]^2=1-2sin(A\/2)sin(B\/2)sin(C\/2)证明完毕。下面给出恒等式:cosA+cosB+cosC=1+4sin(A\/2)sin(B\/2)sin(C\/2)的证明。在△ABC中,显然有:cos[(A+B)...

证明,在三角形ABC中,sinA\/2sinB\/2sinC\/2 是sin(A\/2)sin(B\/2)sin(C\/...
法1(sinA\/2)^2+(sinB\/2)^2+(sinC\/2)^2+2sinA\/2sinB\/2sinC\/2 =sinA\/2((sinA\/2)+2sinB\/2sinC\/2)+(sinB\/2)^2+(sinC\/2)^2 =sinA\/2((cos(B+C)\/2)+2sinB\/2sinC\/2)+(sinB\/2)^2+(sinC\/2)^2 =sinA\/2*cos(B+C)\/2+(1-cosB)\/2+(1-cosC)\/2(积化和差...

在△ABC中,求证sin(A\/2)+sin(B\/2)+sin(C\/2)>=3\/2
先用正弦定理。将角度化成边:sin(A+B)\/(sinA+sinB)+sin(B+C)\/(sinB+sinC)+sin(C+A)\/(sinC+sinA)=sinc\/(sinA+sinB)+sina\/(sinB+sinC)+sinb\/(sinC+sinA)=1\/(sina\/sinc)+(sinb\/sinc)+1\/(sinb\/sina)+(sinc\/sina)+1\/(sinc\/sinb)+(sinc\/sinb)=c\/(a+b)+a\/(b+c)+b\/(...

在三角形ABC中证明(sinA)^2+(sinB)^2+(sinC)^2=4cosA\/2cosB\/2cosC\/2
你这个等式不成立的,没法证明 如令A=B+C=60° 则左=(3\/4)*3=9\/4 而右=4*(√3\/2)³=3√3\/2

在△ABC中,若sinA*cos^2(C\/2)+sinC*cos^2(A\/2)=3\/2sinB
∴sinA+sinC+sin(A+C)=3sinB,∴sinA+sinC+sin(180°-B)=3sinB,∴sinA+sinC=2sinB。 结合正弦定理,容易得到:a+c=2b, ∴a、b、c成等差数列。第二个问题:∵a+c=2b, ∴a^2+c^2+2ac=4b^2,∴(a^2+c^2-b^2)\/(2ac)=3b^2\/(2ac)-1。结合余弦...

相似回答