在三角形ABC中,若sin^2A=sin^2B+sin^2C+sinBsinC,求A的值
sin^2A=sin^2B+sin^2C+sinBsinC,(am)^2=(bm)^2+(cm)^2+(bm)(cm),a^2=b^2+c^+bc=b^2+c^-2cosA * (bc);cosA=-1\/2;A=120
在三角形ABC中,若sin^2A=sin^2B+sin^2C+sinBsinC,求A的值
sin^2A=sin^2B+sin^2C+sinBsinC,(am)^2=(bm)^2+(cm)^2+(bm)(cm),a^2=b^2+c^+bc=b^2+c^-2cosA * (bc);cosA=-1\/2;A=120
在△ABC中,求证:sin^2A+sin^2B-sin^2C=2sinAsinBcosC
证明左边=1\/2(1-cos2A)+1\/2(1-cos2B)-(1-cos²C)=cos²C-1\/2(cos2A+cos2B)=cos²C-cos(A+B)·cos(A-B)=cos²C+cosC·cos(A-B)=cosC[cosC+cos(A-B)]=cosC2cos1\/2(C+A-B)cos1\/2(C-A+B)=2cosCcos1\/2(180°-2B)cos(1\/2)(180°-2A)...
在△ABC中,求证:sin^2A+sin^2B-sin^2C=2sinAsinBcosC
证明左边=1\/2(1-cos2A)+1\/2(1-cos2B)-(1-cos²C)=cos²C-1\/2(cos2A+cos2B)=cos²C-cos(A+B)·cos(A-B)=cos²C+cosC·cos(A-B)=cosC[cosC+cos(A-B)]=cosC2cos1\/2(C+A-B)cos1\/2(C-A+B)=2cosCcos1\/2(180°-2B)cos(1\/2)(180°-2A)...
...若sin^2A=2sinBcosC,sin^2A=sin^2B+sin^2C 求答案啊啊啊
sin^2A=2sinBcosC,sin^2A=sin^2B+sin^2C 相减得 sin^2B+sin^2C-2sinBcosC=0 (sinB-sinC)=0 sinB=sinC 所以 B=C,是等腰三角形,且B、C都是锐角
若三角形ABC的三个内角满足sin^2A=sin^2B+sinBsinC+sin^2C,则角A...
正弦定理:a\/sinA=b\/sinB=c\/sinC=2R 所以,sinA=a\/2R,同理,sinB=b\/2R.sinC=c\/2R 则题中的条件化简为,a^2=b^2+bc+c^2 余弦定理:a^2=b^2+c^2-2bc*cosA 所以,bc=-2bc*cosA 即cosA=-1\/2 得A=120°
在△ABC中,若sin^2A=sin^2B+sin^2C,且sinA=2sinB cosB,试判断△ABC...
改了 结果相同 由正弦定理a\/sinA=b\/sinB=c\/sinC (sinA)^2=(sinB)^2+(sinC)^2 等价于a^2=b^2+c^2 可知△ABC直角三角形 A=π\/2 sinA=2sinBcosC 1=2sinBcos(π\/2-B)1=2sinBsinB sinB=1\/√2 可知B=π\/4 △ABC等腰直角三角形 ...
在△ABC中,求证 sin^2A+sin^2B-sin^2C=2sinA*sinB8cosC
正弦定理:a\/sinA=b\/sinB=c\/sinC=2R 左=(a^2 + b^2 - c^2)\/(2R)^2 右=(2ab)\/(2R)^2 * (a^2 + b^2 - c^2)\/(2ab) = (a^2 + b^2 - c^2)\/(2R)^2 ( 用余弦定理:CosC= (a^2 + b^2 - c^2)\/(2ab) )(你那个“8”多打了吧?)
(1)△ABC中,证明:sin2A=sin2B+sin2C-2sinBsinCc...
代入(*)式,得4R2sin2A=4R2sin2B+4R2sin2C-2•2RsinB•2RsinCcosA 两边约去4R2,得sin2A=sin2B+sin2C-2sinBsinCcosA,原等式成立.(2)∵cos47°=cos(90°-43°)=sin43° ∴sin217°+cos247°+sin17°cos47°=sin217°+sin243°+sin17°sin43° 设△ABC中,B...
△ABC中,sin^2A=sin^2B+sin^2C,则△ABC为
C; sinB=(b\/c)sinC,sin²B=(b\/c)²sin²C。∴ sin^2A=sin^2B+sin^2C (a\/c)²*sin²C=(b\/c)²sin²C+sin²C 化简:(a\/c)²=(b\/c)²+1 → a²=b²+c² → 则△ABC为:直角三角形。