求极限 lim(1/(x+1)-3/(x^3+1))

如题所述

简单分析一下,答案如图所示

温馨提示:内容为网友见解,仅供参考
第1个回答  2018-12-22
原式=lim(x->-1)[1/(x+1)-3/((x+1)(x²-x+1))]
=lim(x->-1)[(x²-x-2)/((x+1)(x²-x+1))]
=lim(x->-1)[((x-2)(x+1))/((x+1)(x²-x+1))]
=lim(x->-1)[(x-2)/(x²-x+1)]
=(-1-2)/(1-(-1)+1)
=-1.本回答被网友采纳
第2个回答  2018-12-22

第3个回答  2018-12-22

C

第4个回答  2018-12-22
哎,要还给老师了

求极限 lim(1\/(x+1)-3\/(x^3+1))
简单分析一下,答案如图所示

求极限lim(1\/(x+1)-3\/(x^3+1)) x趋于-1
:原式=lim(x->-1)[1\/(x+1)-3\/((x+1)(x²-x+1))]=lim(x->-1)[(x²-x-2)\/((x+1)(x²-x+1))]=lim(x->-1)[((x-2)(x+1))\/((x+1)(x²-x+1))]=lim(x->-1)[(x-2)\/(x²-x+1)]=(-1-2)\/(1-(-1)+1)=-1。

求lim [(1\/x+1)-(3\/x^3+1)]= x→-1
简单分析一下,详情如图所示

当x→-1的时候1\/(x+1)-3\/(x^3+1)的极限是多少
设f(x)=1\/(x+1)-3\/(x³+1)=(x²-x-2)\/(x³+1)则对f(x)分子分母分别求导,得:(2x-1)\/(3x²),则:原来的极限=分子分母分别求导后的极限==>>>以x=-1代入== -1

...急~~ lim(1\/x+1-3\/X^3+1) x趋近-1 求函数极限
通分,分解因式,约去X+1 lim(x^2-x+1-3)\/(X^3+1)=lim(x^2-x-2)\/\/X^3+1)=lim(x-2)\/(x^2-x+1)=-1

lim(1\/x+1-3\/X^3+1) x趋近-1 求函数极限
通分,分解因式,约去X+1 lim(x^2-x+1-3)\/(X^3+1)=lim(x^2-x-2)\/\/X^3+1)=lim(x-2)\/(x^2-x+1)=-1

...急~~ lim(1\/x+1-3\/X^3+1) x趋近-1 求函数极限
通分,分解因式,约去X+1 lim(x^2-x+1-3)\/(X^3+1)=lim(x^2-x-2)\/\/X^3+1)=lim(x-2)\/(x^2-x+1)=-1

求[1\/(x+1)]-[3\/(x^3+1)]当x趋近于-1时的极限
思路如图:

高等函数:X趋向-1,求X+1分之一减去X的三次方加一分之三的极限
lim(x-->-1) 1\/(x+1)-3\/(x^3+1)=lim(x^2-x+1-3)\/(x^3+1)=lim(x^2-x-2)\/(x^3+1)=lim(2x-1)\/(3x^2)=(-2-1)\/(3)=-1

若lim[1\/(ax+1)-3∕(x^3﹢1)]﹦‐1,则常数a=()(其中x→-1)
先将分式通分,1\/(ax+1)-3∕(x^3﹢1)=[(x^3+1)-3(ax+1)]\/[(x^3+1)(ax+1)]当x→-1时,分母[(x^3+1)(ax+1)]→0,而[(x^3+1)-3(ax+1)]\/[(x^3+1)(ax+1)]极限存在,所以当x=-1时,分子[(x^3+1)-3(ax+1)]=0,求得a=1 ...

相似回答