高数求极限。
原式=lim(x->0) e^(sinx)*[e^(x-sinx)-1]\/[(1+x)x^3]=lim(x->0) e^(sinx)*lim(x->0) (x-sinx)\/[(1+x)x^3]=lim(x->0) (x-sinx)\/[(1+x)x^3]再运用洛必达法则,最后再用等价无穷小代换 原式=lim(x->0) (1-cosx)\/[x^3+3(1+x)x^2]=lim(x->0) (...
几道高数求极限题目,求解
lim[x→∞] [√(x²+x)-√(x²+1)]=lim[x→∞] [√(x²+x)-√(x²+1)][√(x²+x)+√(x²+1)]\/[√(x²+x)+√(x²+1)]=lim[x→∞] [(x²+x)-(x²+1)]\/[√(x²+x)+√(x²+1)]=lim[x→...
高数求极限,数学高手帮帮忙,要详细的步骤。。谢谢
=e^{lim(x->0)[2ln((1+2x)\/(1+x))\/x]} (令x=1\/n)=e^{lim(x->0)[2\/((1+2x)(1+x))]} (0\/0型极限,应用罗比达法则)=e^2 =e²。解法二:(重要极限法)(1)原式=lim(x->0){[(1+(-x))^(1\/(-x))]^(-1)} ={lim(x->0)[(1+(-x))^(1\/(-...
高数,求极限
1、关于高数求极限问题见上图。2、这个高数第一题求极限,用第二个重要极限可以求出。3、第二题求极限,0代入后,极限可以求出。4、第四题求极限,用第一个重要极限可以求出。或等价无穷小代换。5、第五题求极限,先分解因式和化简后,极限可以求出。
求解高数极限题目!!要详细过程!!【如图!】在线等!!身边没有大神就上网...
解:利用洛必达法则 lim【x→0+】[∫(0→x)ln(t+e^t)dt]\/(1-cosx)=lim【x→0+】[ln(x+e^x)]\/(sinx)=lim【x→0+】1\/(x+e^x)·(1+e^x)\/(cosx)=1\/(0+e^0)·(1+e^0)\/(cos0)=2 答案:2
高数函数求极限
1.原式=lim(x→0)(x²-2x+3)\/(2x³+x²+1)=3\/1=3 2.原式=lim(x→0)[(1-3x)^(1\/(-3x))]^[3(x-1)]=e^{lim(x→0)[3(x-1)} =e^(-3)=1\/e³3.原式=lim(x→0){[√(1+sinx)-√(1-sinx)]\/x} =lim(x→0){2(sinx\/x)\/[√(1+...
高数题。 高数求极限题。 希望可以写在纸上,写出详细的步骤。 有些人...
解:lim(x->0){[x∫<0,x>sin(t^2)dt]\/x^3} =lim(x->0){[∫<0,x>sin(t^2)dt]\/x^2} =lim(x->0){[∫<0,x>sin(t^2)dt]'\/(x^2)'} (0\/0型极限,应用罗比达法则)=lim(x->0)[sin(x^2)\/(2x)]=lim(x->0){(x\/2)*[sin(x^2)\/(x^2)]} =lim(x->0)...
高数,求极限问题。
方法如下,请作参考:
高数求极限
可以考虑洛必达法则,答案如图所示
高数求极限,两道题,要详细过程
回答:原式=lim(x->0)(1-x)^(1\/(-x)×(-1)) =e^(-1) =1\/e 原式=lim(x->0)(1+2x)^[(1\/2x)×2] =[lim(x->0)(1+2x)^(1\/2x)]² =e²