二阶微分方程求解d^2y\/dx^2=-ksiny(k为常数)?
原方程就变成pdp\/dy = -ksiny dy乘过去,积分得 p²\/2 = kcosy + C dy\/dx = p = √(2kcosy + 2C)dy\/√(2kcosy + 2C) = dx 再积一次分就行了.,2,shankai,0,这属于高阶可降阶类型 F(y,y',y'',···,y^(n))=0 令y'=z, 并以它为新应变量,y为新自变量,...
求隐函数y的二阶导数d^2y\/dx^2 要过程。 siny=ln(x+y)
第一次求导,有:y'cosy=(1+y')\/(x+y),得到y'=1\/[(x+y)cosy-1]。对上面的等式再次求导,有y''cosy-(y')^2siny=[(x+y)*y''-(1+y')^2]\/(x+y)^2。则有y''[cosy+1\/(x+y)]=(y')^2siny-[(1+y')\/(x+y)]^2.从而将y'的表达式代入上式,就能求出y''的表达式...
求个函数的二阶导数d^2y\/dx^2
求由方程x-y+ 1\/2 siny=0所确定的隐函数y的二阶导数d^2y\/dx^2 ..将每一个偏导数分别求出来,再代入就可以了! == 也可以对f'(x)对x求导
求方程siny=ln(x+y)所确定的隐函数Y的导数d^2y\/dx^2
第一次求导,有:y'cosy=(1+y')\/(x+y),得到y'=1\/[(x+y)cosy-1]。对上面的等式再次求导,有y''cosy-(y')^2siny=[(x+y)*y''-(1+y')^2]\/(x+y)^2。则有y''[cosy+1\/(x+y)]=(y')^2siny-[(1+y')\/(x+y)]^2.从而将y'的表达式代入上式,就能求出y''的表达式...
求方程siny=ln(x+y)所确定的隐函数Y的导数d^2y\/dx^2
1+y')\/(x+y),得到y'=1\/[(x+y)cosy-1]。对上面的等式再次求导,有y''cosy-(y')^2siny=[(x+y)*y''-(1+y')^2]\/(x+y)^2。则有y''[cosy+1\/(x+y)]=(y')^2siny-[(1+y')\/(x+y)]^2.从而将y'的表达式代入上式,就能求出y''的表达式了。(结果是很冗长的)...
下面微分方程的通解是多少 sec^2X cotY dX - csc^2 Y tanX dY=0
sec^2X cotY dX - csc^2 Y tanX dY=0 sec^2X dX\/tanX - csc^2 Y dY\/cotY=0 dtanX\/tanX+dcotY\/cotY=0 积分得通解:lntanX+lncotY=lnC 或:tanXcotY=C
微分方程dx\/y^2+dy\/x^2=0 y(1)=2的特解是
dy\/dx=1\/(xcosy+sin2y)=1\/(xcosy+2sinycosy)所以cosydy\/dx=1\/(x+2siny)所以dsiny\/dx=1\/(x+2siny)所以dx\/dsiny=x+2siny 令y=siny 则dx\/dy=x+2y 所以dx\/dy -x=2y 所以视x为y的函数,上面的就是一阶非齐次线性方程,很容易解的吧?
求解二阶微分方程 dy\/dx=siny,之类的像dy\/dx=f(y)这样的形式的方程
d2y\/dx2=cosy*(dy\/dx) =sinycosy
急!求由方程x-y+ 1\/2 siny=0所确定的隐函数y的二阶导数d^2y\/dx^2
1\/2 siny=0 F(x,y)=y-x-1\/2siny=0 F,Fx,Fy在定义域的任意点都是连续的,F(0,0)=0 Fy(x,y)>0 f'(x)=-Fx(x,y)\/Fy(x,y)=1\/(1-1\/2cosy)=2\/(2-cosy)Fx(x,y)+Fy(x,y)y'=0 再求导:Fxx(x,y)+Fxy(x,y)y'+[Fyx(x,y)+Fyy(x,y)y']y'+Fy(x,y)y''=...
x+2y-cosy=0,求d^2y\/dx^2
dx+d2y-dcosy=d0 dx+2dy+sinydy=0 (2+siny)dy=-dx dy\/dx=-1\/(2+siny)d(dy\/dx)\/dx=-d[1\/(2+siny)]\/dx 所以d²y\/dx²=1\/(2+siny)² d(2+siny)\/dx =cosy\/(2+siny)²(dy\/dx)而dy\/dx=-1\/(2+siny)所以d²y\/dx²=-cosy\/(2+siny)...