抽象函数问题的几种求解意识

如题所述

抽象函数问题是指没有以显性形式给出函数解析式,只给出函数记号及其满足的相关条件(如函数的定义域、经过某些特殊点、部分图象特征、某些运算性质等)的函数问题。它是高中数学函数部分的难点,也是与大学高等数学的衔接点,从而也就成为了高考中的一个热点与难点。但很多学生对这类问题颇感困惑,不知从何下手,本文总结了几条求解此类问题的思维意识,以期使学生的思维具有较好的方向性和目的性,从而提高解题能力。一、特殊化意识认真观察与分析抽象函数问题中的已知与未知的关系,巧妙地对一般变量赋予特殊值,或把函数赋予特殊函数等,从而达到解决问题的目的,这是常用的思维意识。 1、赋特殊值 例1. 设函数,对任意实数、满足。(1)求证:;(2)求证:为偶函数;(3)已知在上为增函数,解不等式。证明:(1)令,得,故;令,得,故。(2)令,得;令,得,所以,即为偶函数。(3),即,或,由(2)和在上为增函数,可得,解得且。 2、赋特殊函数 例2. 对于任意的函数,在同一个直角坐标系中,函数与函数的图像恒( )(A)关于x轴对称(B)关于直线对称(C)关于直线对称(D)关于y轴对称解:取函数,则,这两个函数是同一个函数,它们的对称轴为,故选(B)。二、递推意识根据题目中所给出的或推出的函数方程,运用递推的思想,逐步递推,达到目的。 例3. 已知是定义在R上的函数,,且对于任意都有,若________。解:由,和,从而由题设有,。故。即,所以是以1为周期的周期函数。又,所以。三、换元意识根据题目结构特点及欲证的结论,将题中的某些量替换成所需的量(注意:应使函数的定义域不发生改变,有时还需要作几次相应的替换),得到一个或几个方程,然后设法从中求其解。 例4. 若函数的定义域为,求函数的定义域。解:设,因为的定义域为,所以,则的定义域是。又令得即的定义域是。四、化归意识有些抽象函数与函数的单调性、奇偶性、对称性等性质联系密切,求解这类问题应充分理解题意,综合运用函数知识和函数思想,将其转化到熟悉的问题中来。 例5. 已知定义在R上的函数满足:(1)对于任意都有;(2)当时,,且。求在上的最大值和最小值。解:任取,由条件(1)得,所以,因为,由条件(2)得,所以,所以在上单调递减。在(1)中令,得,所以,再令,得,所以,从而为奇函数,因此,上的最大值为,最小值为。五、类比意识即通过联想符合题设条件的特殊函数,将其相关性质或特征类比推广到抽象函数,并予以证明与应用。 例6. 设函数的定义域为R,对于任意实数m、n,总有,且。(1)求的值;(2)判断在R上的单调性,并证明你的结论;(3)设,,a、b、c,a、b不同时为零,若,确定实数a、b、c三者之间的关系。分析:根据所给条件,易联想到符合题设的指数函数,从而问题(1)、(2)的求解方向就十分明确了,当然这只是猜测,还需要严格证明。解:(1)因为对于任意实数m、n总有,所以令,得,又时,,故,从而有。(2)首先注意到,当时,,从而,设,则,即,故是R上单调递减函数。(3)由,知,从而,它表示单位圆的内部;由,知;而,故直线和圆的内部没有公共点,即直线和圆相切或相离,从而有。
温馨提示:内容为网友见解,仅供参考
无其他回答

抽象函数问题的几种求解意识
一、特殊化意识认真观察与分析抽象函数问题中的已知与未知的关系,巧妙地对一般变量赋予特殊值,或把函数赋予特殊函数等,从而达到解决问题的目的,这是常用的思维意识。 1、赋特殊值 例1. 设函数,对任意实数、满足。(1)求证:;(2)求证:为偶函数;(3)已知在上为增函数,解不等式。证明:(...

抽象函数怎么解
f(-x)=f(x),可得f(x)是一个偶函数。三.利用函数的图象性质来解题:抽象函数虽然没有给出具体的解析式,但可利用它的性质图象直接来解题。抽象函数解题时常要用到以下结论:定理1:如果函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图象关于x= 对称。定理2:如果函数y=f(x)满足f(...

抽象函数解题技巧
1、在没有给出具体的函数解析式,而只给出了一些体现该函数特性或关系的已知条件下,求解函数解析式、函数值、参数值等均属于抽象函数的基本问题。2、由于没有函数解析式,抽象函数问题的理解变得比较抽象,其解答思路与(已给出解析式的)常规函数相去甚远。这令大多数基础不扎实的同学为之头疼不已,使...

抽象函数的解题技巧有哪些?
首先,我们需要理解抽象函数的定义。抽象函数是一种将输入映射到输出的函数,它的输入和输出都是抽象的集合。这意味着我们不能直接使用具体的数值来计算抽象函数的值,而需要通过定义一个映射关系来描述这种关系。其次,我们需要掌握抽象函数的基本性质。例如,如果两个函数的定义域相同,那么它们的复合函数的...

如何求解抽象函数的值域、单调性等问题?
严格根据定义求 单调性用定义证明,即定义域内取X1<X2 比较f(x2)-f(x1)和0的大小 大于0为增,反之为减

求解?求抽象函数的定义域?这三种方法不理解,请详细解释一下,有更好...
若y=f(u)是从集合A到集合B的映射,u=g(x)是从集合C到集合D的映射,D是A的子集,则称 y=f[g(x)]是y=f(u)与u=g(x)的复合函数。对于抽象函数,其定义域常常是自变量的最大允许值范围,即D=A.3个变式,本质一样。(1)已知A,求C;(2)已知C,求A.(3)(1),(2)的结合。

怎样理解抽象函数,说的通俗点。。。下面有例题,根据例题来讲下...
那么f(x+2)=(x+2)+2=x+4,一个简单例子 (换元是为了说明)所以2f(1\/a)+f(a)=3\/a 所以2f(1\/x)+f(x)=3\/x (2)(在这里再换回来)两条式子都有了,下面就是计算问题 (1)×2-(2)3f(x)=6x-3\/x=3(2x²-1)\/x f(x)=(2x²-1)\/x 其实若是抽象函数求解析式...

关于抽象函数的例题
1抽象函数常常与周期函数结合,如: f(x)=-f(x+2) f(x)=f(x+4) 2解抽象函数题,通常要用赋值法,而且高考数学中,常常要先求F(0) F(1) 抽象函数的经典题目!!! 我们把没有给出具体解析式的函数称为抽象函数。由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题...

高中数学这里所说的抽象函数问题是指没有明确给出具体的函数表达式的...
问题:高中数学这里所说的抽象函数问题是指没有明确给出具体的函数表达式的问题.利用函数的单调性,脱掉函数记这里所说的抽象函数问题是指没有明确给出具体的函数表达式的问题.利用函数的单调性,脱掉函数记号"f",揭示函数本质,让其"还俗"是解决这类问题的关键.求解这类问题对发展学生的思维能力, 那个f是...

怎么求抽象函数的单调性、奇偶性、值域和定义域?
③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.3.求函数值域(最值)的一般方法:(1)利用基本...

相似回答