已知等比数列{an}中,a2=2,a5=128,若bn=log2(an),数列{an}前n项和为Sn.

①若Sn=35,求n的值 ②求不等式Sn<2bn的解集
没有问题

第1个回答  2009-10-07
有问题。算出来n不是整数。
第2个回答  2014-02-02

已知等比数列{an}中,a2=2,a5=128,若bn=log2an,数列{bn}前n项的和为S...
(I)在等比数列{an}中,由a5=a2q3,又a2=2,a5=128,q3=64,∴q=4,∴an=a2qn-2=2?4n-2=22n-3,∴bn=log2an=log222n-3=2n-3.bn=b1+b2+b3+…+bn=(2?1-3)+(2?2-3)+(2?3-3)+…+(2?n-3)=2(1+2+3+…+n)-3n=n2-2n(II)由Sn<2bn,得n2-2n<2...

已知在等比数列{an}中,a2=2,a5=128,若bn=log2an,求数列{bn}前n项...
a5=a2q^3 128=2q^3 q^3=64 q=4 an=a1q^(n-1)=a2q^(n-2)=2*4^(n-2)=2*2^(2n-4)=2^(2n-3)bn=log2an =log2 2^(2n-3)=2n-3 所以bn 是以2为公差的等差数列 b1=2*1-3=-1 sn=-1+1+3+...+2n-3 =(2n-3-1)n\/2 =n(n-2)sn<bn n(n-2)<2n-3 n^...

已知等比数列{an}中,a2=2,a5=128,(1)求数列{an}的通项公式(2)若bn=l...
(1)设公比为q,依题意a1q=2a1q4 =128解得a1=12,q=4∴an=12×4n-1=22n-3 (n∈N*)(2)bn=log2an=log2(22n-3)=2n-3∴数列{bn}为首项为-1,公差为2的等差数列∴Sn=n(?1+2n?3)2=n(n-2)(3)∵Snn=n(n?2)n=n-2∴Tn=S11+S22+S33+…+Snn=(1-2)+(...

已知等比数列{an}中,a2=2,a5=128 .求通向公式an ,若bn=log∨2∧an(2
设公比q,a2乘以q的三次方=a5,代值后算得q=4,所以a1=二分之一,an=2的2n-3次方

等比数列{an}中,a2=2,a5=128.(1)求数列{an}的通项公式;(2)令bn=lo...
(1)q^3=a5\/a2=128\/2=64 q=4 an=a2*q^(n-2)=2*4^(n-2)(2)bn=log(4,2*4^(n-2))=log(4,2)+log(4,4^(n-2))=1\/2+(n-2)=(2n-3)\/2 b1=-1\/2,d=1 Sn=(b1+bn)n\/2=n(n-2)\/2

...An]中,a2=2,a5=128.求通项An;若bn=10g2An求数列[bn]的前10项和S10...
一、An=(4^n)\/2 公比q^(5-2)=a5\/a2,q=4 a1=a2\/q=1\/2,An=a1*q^n=(4^n)\/2 二、S10=100 bn=log((4^n)\/2)=log(4^n)-log2=nlog4-log2=2n-1 b1=1,b10=19 S10=(1+19)*10\/2=100

已知在等比数列{An}中,A2=2,A5=128,
解:(1)设公比为q,由a2=2,a5=128及a5=a2q³得 128=2q³,∴q=4 ∴an=a2q^(n-2)=2•4^(n-2)=2^(2n-3)(6分)(2)∵bn=log(2)[2^(2n-3)]=2n-3,∴数列{bn}是以-1为首项,2为公差的等差数列 ∴Sn=n(-1)+n(n-1)\/2•2=n²...

已知各项为正数的等比数列{an}中,a2=2,a3?a5=64.(Ⅰ)求数列{an}的通项...
(Ⅰ)设等比数列{an}的首项为a1,公比为q,由已知得a1q=2a1q2?a1q4=64,又∵an>0,解得a1=1,q=2,∴等比数列{an}的通项公式为an=2n-1.(Ⅱ)∵bn=log2an=n-1,∴Tn=0+1+2+3+…+(n-1)=n(n?1)2.

等比数列{an}的各项均为正数,且a2=2,a4=12.(Ⅰ)求数列{an}的通项公...
(Ⅰ)设数列an的公比为q,则a2=a1q=2a4=a1q3=12…(2分)解得q=12,a1=4(负值舍去).…(4分)所以an=a1qn?1=4?(12)n?1=2?n+3.…(6分)(Ⅱ)因为an=2?n+3,bn=log2an,所以bn=log22?n+3=?n+3,…(8分)bn-bn-1=(-n+3)-[-(n-1)+3]=-1,...

已知正项等比数列{an},a1=2,又bn=log2an,且数列{bn}的前n项...
解:设等比数列{an}的公比为q,则bn+1-bn=log2an+1-log2an═log2q ∴数列{bn}是以log2q为公差,以log2a1=1>0为首项的等差数列,其通项公式为bn=1+(n-1)log2q.由于当且仅当n=7时Tn最大,∴log2q<0,且b7>0,b8<0,即1+6log2q>01+7log2q<0,∴log2q>-16log2...

相似回答
大家正在搜