数学问题:已知等比数列[An]中,a2=2,a5=128.求通项An;若bn=10g2An求数列[bn]的前10项和S10.

如题所述

一、An=(4^n)/2
公比q^(5-2)=a5/a2,q=4
a1=a2/q=1/2,An=a1*q^n=(4^n)/2
二、S10=100
bn=log((4^n)/2)=log(4^n)-log2=nlog4-log2=2n-1
b1=1,b10=19
S10=(1+19)*10/2=100
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-01-08
一、a5=2*q^3=128 q=4 a1=a2/q=1/2,An=a1*q^n=(4^n)/2
二、bn=log((4^n)/2)=log(4^n)-log2=nlog4-log2=2n-1 b1=1,b2=3,b3=5,b4=7,b5=9,.....b10=19 Sn=(b1+bn)*n/2 S10=(1+19)*10/2=100
第2个回答  2012-01-06
An=1/2×4∧(n-1),你那个bn是革什么啊尤其是10g2是什么?
第3个回答  2012-01-06
vvvvvvvvv
第4个回答  2012-01-06
An=(1/2)4^(n-1);至于bn "bn=10g2An"是什么意思?

数学问题:已知等比数列[An]中,a2=2,a5=128.求通项An;若bn=10g2An求数 ...
一、An=(4^n)\/2 公比q^(5-2)=a5\/a2,q=4 a1=a2\/q=1\/2,An=a1*q^n=(4^n)\/2 二、S10=100 bn=log((4^n)\/2)=log(4^n)-log2=nlog4-log2=2n-1 b1=1,b10=19 S10=(1+19)*10\/2=100

已知在等比数列{an}中,a2=2,a5=128,若bn=log2an,求数列{bn}前n项...
128=2q^3 q^3=64 q=4 an=a1q^(n-1)=a2q^(n-2)=2*4^(n-2)=2*2^(2n-4)=2^(2n-3)bn=log2an =log2 2^(2n-3)=2n-3 所以bn 是以2为公差的等差数列 b1=2*1-3=-1 sn=-1+1+3+...+2n-3 =(2n-3-1)n\/2 =n(n-2)sn<bn n(n-2)<2n-3 n^2-2n<2n-3...

已知等比数列{an}中,a2=2,a5=128,若bn=log2an,数列{bn}前n项的和为S...
(I)在等比数列{an}中,由a5=a2q3,又a2=2,a5=128,q3=64,∴q=4,∴an=a2qn-2=2?4n-2=22n-3,∴bn=log2an=log222n-3=2n-3.bn=b1+b2+b3+…+bn=(2?1-3)+(2?2-3)+(2?3-3)+…+(2?n-3)=2(1+2+3+…+n)-3n=n2-2n(II)由Sn<2bn,得n2-2n<2...

已知等比数列an中,a1=1,a5=8a2, 1.求数列an2.若bn=an+n,求数列bn的前...
.a5=8a2=a2*q^3 所以q=2 .an=a1*q^n-1=2^(n-1).bn=an+n 设cn=n 则:{bn}的前n项和即{an}与{cn}两数列前n项和的和 San=a1(1-q^n)\/(1-q)=2^n-1 Scn=n(n+1)\/2 所以Sn=San+ Scn=2^n-1+ n(n+1)\/2 ...

在等比数列{an}中,已知a2=8,a5=1.求{an}的通项公式,若bn=a2n,求数列...
a2=a1*q=8 a5=a1*q^4=1 解得:a1=16 q=1\/2 ∴an=a1*q^(n-1)=16*(1\/2)^(n-1)=1\/2^(n-5)bn=a2n=1\/2^(2n-5)Sn=b1+b2+b3+...+bn =1\/2^(-3)+1\/2^(-1)+1\/2^(1)+...+1\/2^(2n-5)=8*(1-1\/2^2n)\/(1-1\/2^2)=32*(1-1\/2^2n)\/3 =32\/3...

...为3a1和a3的等差中项,(1)求数列{an}的通项;(2)若bn=n+an,求{bn...
(1)设等比数列{an}的公比为q,∵a2-a1=2,且2a2为3a1和a3的等差中项,∴a1q-a1=2,4a1q=3a1+a1q2,解得a1=1q=3,∴an=3n?1.(2)∵bn=n+an=n+3n-1.∴{bn}的前n项和=(1+2+…+n)+(1+31+32+…+3n-1)=n(n+1)2+3n?13?1=12(n2+n+3n?1).

已知等比数列{an}中,a1等于1,a5等于8a2,(1)求数列{an}的通项公式?(2...
(1)a5=8a2=a2×q³,q=2 an=a1q(n-1)=2^(n-1)(2)bn=2^(n-1)+n,前n项和可以拆成两部分,一部分是{an}的前n项和,一部分是n(即等差数列,公差为1,首项为1)的前n项和。Sn=[a1*(1-q^n)]\/(1-q)+n(n+1)\/2 =2^n+n²\/2+n\/2 -1 ...

已知数列{an}中,a1=3,且a的n+1项=2a的n项-1(1)求{an}的通项公式(2)求...
a(n+1) = 2an -1 a(n+1)-1 = 2(an -1)[a(n+1)-1]\/(an -1)=2 (an -1)\/(a1 -1)=2^(n-1)an = 1+ 2^n (2)cn =nan = n + 2.(n.2^(n-1)Tn = c1+c2+...+cn = n(n+1)\/2 + 2[∑(i:1->n) i.2^(i-1)]consider 1+x+x^2+...+x^n = ...

已知数列{an}满足a1=1,a2=a>0,数列{bn}满足bn=an•an+1 (1)若{an...
解:(1)∵{an}为等比数列,公比a2\/a1=a,an=a^(n-1),n∈N ∴bn=a^(n-1)*a^n=a^(2n-1),n∈N ∵b(n+1)\/bn=a^2,为非零常数 ∴{bn}为首项为a,公比为a^2的等比数列 ∴a=1,sn=n a≠1,sn=[a(1-a^(2n))]\/(1-a^2)

已知等比数列{an}满足a1?a2?a3=64,且a3+2是a2,a4的等差中项.(1)求...
(1)设等比数列首项为a1,公比为q,由题知 a1?a2??a3=a23=642(a3+2)=a2+a4,a2=42(a2q+2)=a2+a2q2,∵q≠0,得 a2=4q=2,∴a1=2,∴an=2?2n?1=2n---(5分)(2)由(1)得bn=anlog12an=2nlog

相似回答
大家正在搜