设f(sinx\/2)=1+cosx,则f(cosx\/2)=
解:令sinx\/2=t f(t)=1+1-2t^2=2-2t^2 f(cosx\/2)=2-2(cosx\/2)^2 =2-2(1+cosx)\/2 =1-cosx
设f(sinx\/2)=1+cosx,则f(cosx\/2)等于多少
令sinx\/2=t f(t)=1+1-2t^2=2-2t^2 f(cosx\/2)=2-2(cosx\/2)^2 =2-2(1+cosx)\/2 =1-cosx
设f(sinx\/2)=1+cosx,求f(coSx\/2).
f(sinx\/2)=1+(1-2sin²x\/2)=2-2sin²x\/2 所以f(x)=2-2x²所以原式=2-2cos²x\/2 =2-[(2cos²x\/2-1)+1]=2-(cosx+1)=1-cosx
f(sinx\/2)=cosx+1,则f(cosx\/2)=___?要有过程
利用2倍角公式f(sinx\/2)=cosx+1=1-2(sinx\/2)^2+1 =2-2(sinx\/2)^2令sinx\/2=t f(t)=2-2t^2 t换回x f(x)=2-2x^2 f(cosx\/2)=2-2(cosx\/2)^2=2-2(cosx+1)\/2=1-cosx 1 1 已赞过 已踩过< 你对这个回答的评价是? 评论 分享 微信扫一扫 网络繁忙请稍后重试 新浪微博 QQ空间 ...
设f(sinx\/2)=1+cosx,求f(cosⅹ)
如图所示
已知f(sinx\/2)=cosx+1,则f(cosx\/2)等于多少
f(sinx\/2)=cosx+1=2-2sin²x\/2 所以 f(x)=2-2x²f(cosx\/2)=2(1-cos²x\/2)=2sin²x\/2
设f(sinx\/2)=1+cosx,求f(x) 求解 谢谢!
f(sinx\/2)=1+cosx =1+1-2sin²x\/2 所以 f(x)=2-2x²如有不明白,可以追问 如有帮助,记得采纳,谢谢
已知f(sin x\/2)=cosx+1,则f(cos x\/2)=?
f(sinx\/2)=cosx+1 =1-2(sin(x\/2))^2 +1 =2- 2(sin(x\/2))^2 f(x)=2-2x^2 f(cos(x\/2)^2=2-2(cos(x\/2))^2 =2-(1+cosx)=1-cosx
已知f(sinx\/2)=cosx+1,求f(x)及f(cosx\/2).要全解题过程。谢谢!_百度...
f(sinx\/2)=cosx+1=1-2(sinx\/2)^2+1=2-2(sinx\/2)^2 令sinx\/2=t 即得f(t)=2-2t^2 即f(x)=2-2x^2 f(cosx\/2)=2-2(cosx\/2)^2=2-2[(cosx+1)\/2]^2=2-2*(cosx+1)\/2 =2-(cosx+1)=1-cosx
f(sinx\/2)=1+cosx,求f(x)
由倍角公式:cos2x=1-2sin²x,∴cosx=1-2sin²(x\/2)f(sinx\/2)=1+1-2sin²(x\/2)即f(x)=2-2x²,