求不定积分一题 ∫dx/(3+cosx)

如题所述

简单计算一下即可,答案如图所示

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-03-17
1.利用万能代换公式化为有理函数的不定积分,即令t=tan(x/2),则x=2arctant,cosx=(1-t^2)/(1+t^2)
∫dx/(3+cosx)=∫d(2arctant)/[3+(1-t^2)/(1+t^2)]=2∫(1/1+t^2)/[3+(1-t^2)/(1+t^2)]dt=...有理函数一定可以积出来,最后只须把t回代即可
2.凑微分法:3+cosx=3[(sin(x/2))^2+(cos(x/2))^2]+[(cos(x/2))^2-sin(x/2))^2]=2(sin(x/2))^2+4(cos(x/2))^2
∫dx/(3+cosx)=∫dx/[2(sin(x/2))^2+4(cos(x/2))^2]=∫[1/(cos(x/2))^2]{1/[2(tan(x/2))^2+4]}dx=∫[2d(tan(x/2))^2]/[2(tan(x/2))^2+4]=∫du/(u^2+2)=(1/√2)arctan(u/√2)+c
u=(tan(x/2))^2
主要是数学符号不好表达,看上去混乱了点,其实很清晰简单的

求不定积分一题 ∫dx\/(3+cosx)
简单计算一下即可,答案如图所示

求不定积分一题∫dx\/(3+cosx)?
1.利用万能代换公式化为有理函数的不定积分,即令t=tan(x\/2),则x=2arctant,cosx=(1-t^2)\/(1+t^2)∫dx\/(3+cosx)=∫d(2arctant)\/[3+(1-t^2)\/(1+t^2)]=2∫(1\/1+t^2)\/[3+(1-t^2)\/(1+t^2)]dt=...有理函数一定可以积出来,最后只须把t回代即可 2.凑微分法:3+...

∫dx\/3+cosx dx 详细过程
∫ 1\/(3 + cosx) dx= (1\/√2)arctan[(1\/√2)tan(x\/2)] + C。C为积分常数。解答过程如下:令u = tan(x\/2),cosx = (1 - u²)\/(1 + u²),dx = 2du\/(1 + u²)∫ 1\/(3 + cosx) dx = ∫ 1\/[3 + (1 - u²)\/(1 + u²)] · ...

求不定积分∫1\/(3+cosx)dx, cosx是cosx=(1-t^2)\/(1+t^2),这是怎么得到...
tanx = sinx\/cosx = [2t\/(1 + t²)]\/[(1 - t²)\/(1 + t²)] = 2t\/(1 - t²)所以∫ dx\/(3 + cosx)= ∫ 1\/[3 + (1 - t²)\/(1 + t²)] * 2dt\/(1 + t²)= 2∫ dt\/[3(1 + t²) + (1 - t²)] dt =...

1\/(3+cos x)的不定积分怎么算?
用万能代换,令t=tan(x\/2),则cosx=(1-t²)\/(1+t²),dx=2dt\/(1+t²)∫dx\/(3+cosx)=2∫dt\/(2t²+4)=∫dt\/(t²+2)=√2\/2arctan(t\/√2)+C =√2\/2arctan(tan(x\/2)\/√2)+C ...

∫(3+cosx)dx的不定积分?
两个类型不同函数和的不定积分,则需分开来求,具体步骤如下图所示:

求不定积分∫1\/(3+cosx)dx,麻烦大家帮帮忙哈,谢谢啦^_^
就是万能代换。令t=tanx\/2,x=2arctant,dx=2\/(1+t^2)dt,cosx=(1-t^2)\/(1+t^2),代入得:∫1\/(3+cosx)dx=∫1\/(3+(1-t^2)\/(1+t^2))*2\/(1+t^2)dt=∫1\/(2+t^2)dt=(1\/√2)arctan(t\/√2)+C =(1\/√2)arctan(tan(x\/2)\/√2)+C ...

求不定积分:∫ 1\/(3+cosx) dx
令x=2u,则:u=x\/2,dx=2du。∴∫[1\/(3+cosx)]dx =2∫[1\/(3+cos2u)]du =2∫{1\/[3+2(cosu)^2-1]}du =2∫{1\/[2+2(cosu)^2]}du =∫{1\/[1+(cosu)^2]du =∫{1\/[2(cosu)^2+(sinu)^2]}du =∫{1\/[2+(tanu)^2]}...

∫1\/(3+ cosx) dx求积分的步骤是什么
令t=tanx\/2 x=2arctant dx=2\/(1+t^2)dt cosx=(1-t^2)\/(1+t^2)代入得:∫1\/(3+cosx)dx =∫1\/(3+(1-t^2)\/(1+t^2))*2\/(1+t^2)dt =∫1\/(2+t^2)dt=(1\/√2)arctan(t\/√2)+C =(1\/√2)arctan(tan(x\/2)\/√2)+C ...

求不定积分∫1\/(3+cosx)dx,
用万能代换,令tan(x\/2)=t,则 sinx=2t\/(1+t^2),cosx=(1-t^2)\/(1+t^2),dx=2\/(1+t^2)dt 原积分化为∫ 1\/(2+t^2)dt=1\/√2arctant\/√2 +C ,其中t=tan(x\/2)

相似回答