计算1/1×2×3 +1/2×3×4 +1/3×4×5 +……+1/48×49×50 怎样算简便

六年级奥数计算1/1×2×3 +1/2×3×4 +1/3×4×5 +……+1/48×49×50 怎样计算简便

不好意思看错题了,,,, 更正一下: 1/(k-1)k(k+1) =1/k(k^2-1) =k/(k^2-1)-1/k =1/2(k-1)+1/2(k+1)-1/k [49>=k>=2] 就按这种思路把每项分解开再求和。 好吧,那就给你算出来吧。 通项 =1/2(k-1)+1/2(k+1)-1/k =[1/(k-1)+1/(k+1)]/2-1/k 原式 =[1/1+1/3]/2-1/2 +[1/2+1/4]/2-1/3 +[1/3+1/5]/2-1/4 +[1/4+1/6]/2-1/5 ... +[1/46+1/48]/2-1/47 +[1/47+1/49]/2-1/48 +[1/48+1/50]/2-1/49 上式各项同乘以2,整体再除以2,其值不变。 ∴原式 ={[1/1+1/3]-2/2 +[1/2+1/4]-2/3 +[1/3+1/5]-2/4 +[1/4+1/6]-2/5 ... +[1/46+1/48]-2/47 +[1/47+1/49]-2/48 +[1/48+1/50]-2/49}/2 ={1/2-1/49+1/50}/2 =(25*49-50+49)/2*49*50 =1224/4900 =306/1225
温馨提示:内容为网友见解,仅供参考
无其他回答

...+1\/2×3×4 +1\/3×4×5 +……+1\/48×49×50 怎样算简便?
=1\/2[1\/1×2-1\/2×3+1\/2×3-1\/3×4+ ……+1\/48×49-1\/49×50]=1\/2[1\/1×2-1\/49×50]=1\/2[1\/2-1\/49×50]自己可化简

...+1\/(2×3×4)+1\/(3×4×5)+……+1\/(48×49×50)
我的 1\/(1×2×3)+1\/(2×3×4)+1\/(3×4×5)+……+1\/(48×49×50)  我来答 1个回答 #热议# 什么样的人容易遇上渣男?尹六六老师 2014-08-12 · 知道合伙人教育行家 尹六六老师 知道合伙人教育行家 采纳数:33776 获赞数:142980 百强高中数学竞赛教练, 大学教案评比第一名, 最受学生...

1\/1x2x3+1\/2x3x4+···+1\/48x48x50=用简便算法怎么算
1\/1x2x3 、1\/2x3x4 可以写成:1\/n x(n + 1)x (n + 2) 或者 1\/(n - 1)x n x (n + 1)1\/48x48x50 则写成:1\/n x n x (n + 2)所以未知解

1\/1*2*3+1\/2*3*4+1\/3*4*5+。。。+1\/48*49*50 简便些
=(1\/1*2-1\/2*3+1\/2*3-1\/3*4+1\/3*4-1\/4*5+……+1\/48*19-1\/49*50)÷2 =(1\/1*2-1\/49*50)÷2 =(1\/2-1\/2450)÷2 =1\/4-1\/4900 =1224\/4900 =306\/1225 懂了吗?来自英语牛人团 望采纳 O(∩_∩)O谢谢 ...

1\/1*2*3+1\/2*3*4+.+1\/48*49*50=?要过程 谢
1\/1*2*3+1\/2*3*4+.+1\/48*49*50 =(1\/1*2-1\/2*3+1\/2*3-1\/3*4+.+1\/48*49-1\/49*50)÷2 =(1\/1*2-1\/49*50)÷2 =(1\/2-1\/2450)÷2 =612\/1225÷2 =306\/1225

1\/1×2×3+1\/2×3×4+1\/3×4×5+1\/4×5×6+...+1\/48×49×50的计算过 ...
=(1\/2)*(1\/1×2-1\/2×3)+(1\/2)*(1\/2×3-1\/3×4)+...(1\/2)*(1\/48×49-1\/49×50)=(1\/2)*(1\/1×2-1\/2×3+1\/2×3-1\/3×4+1\/3×4...+1\/48×49-1\/49×50)=(1\/2)*(1\/1×2-1\/49×50)=(1\/2)*(1224\/2450)=612\/2450 =306\/1225 ...

1\/1*2*3+1\/2*3*4+```+1\/48*49*50=?
1\/1*2*3+1\/2*3*4+...+1\/48*49*50 =(1\/1*2-1\/2*3+1\/2*3-1\/3*4+...+1\/48*49-1\/49*50)÷2 =(1\/1*2-1\/49*50)÷2 =(1\/2-1\/2450)÷2 =612\/1225÷2 =306\/1225

1\/1×2+1\/2×3+1\/3×4+1\/4×5简便算法
利用1\/n(n+1)=1\/n-1\/(n+1)即可求解 1/1×2+1/2×3+1/3×4+1/4×5 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+(1\/4-1\/5)= 1 -1\/2 + 1\/2- 1\/3 + 1\/3-1\/4 + 1\/4 -1\/5 = 1 -1\/5 = 4\/5 ...

1\/1*2*3+1\/2*3*4+1\/3*4*5+1\/4*5*6...+1\/48*49*50怎么做啊
1\/(n-1)n(n+1)可以化为(1\/n(n-1)-1\/n(n+1))\/2, 原式=(1\/1*2-1\/2*3+1\/2*3-1\/3*4...1\/48*49-1\/49*50)\/2 =(1\/2-1\/2450)\/2 =306\/1225

计算——— 1\/2*3+1\/3*4+1\/4*5+…+1\/49*50等于多少?
1\/2×3+1\/3×4+1\/4×5+……+1\/48×49+1\/49×50 =(1\/2-1\/3)+(1\/3-1\/4)+.+(1\/49-1\/50)=1\/2-1\/50 =24\/50 =12\/25

相似回答