n趋向于无穷,求极限lim(1/(n^3+根号下(n^3+1))+2^2/(n^3+根号下n^3+2)+…+n^2/(n^3+根号下n^3+n))

如题所述

由夹逼准则,可得lim(1+2^2+…+n^2)/(n^3+√(n^3+n))<lim<lim(1+2^2+…+n^2)/(n^3+√(n^3+1)),1/3<lim<1/3,故lim=1/3
温馨提示:内容为网友见解,仅供参考
无其他回答

n趋向于无穷,求极限lim(1\/(n^3+根号下(n^3+1))+2^2\/(n^3+根号下n^3+...
由夹逼准则,可得lim(1+2^2+…+n^2)\/(n^3+√(n^3+n))<lim<lim(1+2^2+…+n^2)\/(n^3+√(n^3+1)),1\/3<lim<1\/3,故lim=1\/3

求极限limx→∞[1^2\/(n^3+1)+2^2\/(n^3+2)+……+n^2\/(n^3+n)]_百度知...
——》n(n+1)(2n+1)\/6(n^3+n)<=1^2\/(n^3+1)+2^2\/(n^3+2)+……+n^2\/(n^3+n)<=n(n+1)(2n+1)\/6(n^3+1),limn→∞ (n+1)(2n+1)\/6(n^2+1)=limn→∞ (1+1\/n)(2+1\/n)\/6(1+1\/n^2)=2\/6=1\/3,limn→∞ n(n+1)(2n+1)\/6(n^3+1)=limn→...

...lim(1\/(n^3+1) + 4\/(n^3+4)+...+n^2\/(n^3+n^2)) n->∞
因为 1^2\/(n^3+1)+2^2\/(n^3+2)+...+n^2\/(n^3+n) (把分母放缩成n^3+1)<=1^2\/(n^3+1)+2^2\/(n^3+1)+...+n^2\/(n^3+1)(利用1^2+...+n^2=1\/6*n(n+1)(2n+1))=[1\/6*n(n+1)(2n+1)]\/(n^3+1) (1)另一方面,1^2\/(n^3+1)+2^2\/(n^...

lim┬(n→∞)⁡〖(n^2+3)\/∛(n^6+1)〗求极限急!!!
2014-10-27 求极限 lim【1\/(n^2+n+1)+2\/(n^2+n+2... 1 2011-04-30 lim((5^n-4^(n-1))\/((5^(n+1)+3^... 5 2011-01-28 求极限lim(1+2^n+3^n)^1\/n。。。n-->无穷 65 2014-11-15 求极限lim (3^n+1-2^n+1)\/(3^n+2^n) 2014-08-19 lim┬(n→∞)⁡〖...

当x趋近于无穷时,求lim(2^n+3^n)\/[2^(n+1)+3^(n+1)]
x趋于负无穷 上下除以2^n =lim[1+(3\/2)^n]\/[2+3*(3\/2)^n]3\/2>1 所以(3\/2)^n趋于0 所以=1\/2 x趋于正无穷 上下除以3^n =lim[(2\/3)^n+1]\/[2*(2\/3)^n+3]0<2\/3<1 所以(2\/3)^n趋于0 所以=1\/3 不相等 所以极限不存在 ...

lim [1^2\/(n^3+1)+2^2\/(n^3+2)+...+n^2\/(n^3+n)]
可以用两边夹法则:因为 1^2\/(n^3+1)+2^2\/(n^3+2)+...+n^2\/(n^3+n) (把分母放缩成n^3+1)<=1^2\/(n^3+1)+2^2\/(n^3+1)+...+n^2\/(n^3+1)(利用1^2+...+n^2=1\/6*n(n+1)(2n+1))=[1\/6*n(n+1)(2n+1)]\/(n^3+1) (1)另一方面,1^2\/(n^...

利用定积分求极限:lim(n趋向于正无穷)(1\/n^4)(1+2^3+...+n^3)
原式=lim(n→∞)1\/n*[(1\/n)^3+(2\/n)^3+...+(n\/n)^3]=∫(0→1)x^3dx (区间[0,1]的分点为i\/n)=x^4\/4|(0→1)=1\/4 存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得|xn-a|≥ε,就说数列{xn}不收敛于a。如果{xn}不收敛于任何常数。N的相应性:一般来...

一道高数求极限的题目lim(n→无穷大)n\/(n^2+3)+n\/(n^2+12)+...+n\/...
用定积分来做 把分母上提出个n^2,所以 原极限=lim1\/n* ∑1\/[(1+3(k\/n)^2]=∫[1\/(1+3x^2)]dx 积分区间o到1 =1\/√3 arctan√3x| (o到1)=1\/√3(π\/3-0)=√3·π\/9

limn趋近无穷 1\/n^3+(1+2)\/n^3+…+(1+2+…+n)\/n^3
lim (1+2^n+3^n)^1\/n = lim (((1\/3)^n+(2\/3)^n+1)3^n )^1\/n= lim 3*((1\/3)^n+(2\/3)^n+1)^1\/n= 3

lim(1\/n^3+(1+2)\/n^3+...+(1+2+...+n)\/n^3) n趋于无穷
= [(1*1 + 2*2 + ...+ n*n) + (1 + 2 + ...+ n)]\/2 = [bn + an]\/2 其中bn = 1*1 + 2*2 + ...+ n*n = n(n+1)(2n+1)\/6 故 Sn = [bn + an]\/2 = [n(n+1)(2n+1)\/6 + n(n+1)\/2]\/2 lim(1\/n^3+(1+2)\/n^3+...+(1+2+...+n)\/...

相似回答