关于圆周率的历史资料

具体的历史资料

第1个回答  2009-09-13
jkjuk
第2个回答  2019-09-07
我是帅哥。

圆周率的历史
约在公元530年,印度数学大师阿耶波多算出圆周率约为根号9.8684。婆罗摩笈多采用另一套方法,推论出圆周率等于10的算术平方根。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入...

圆周率的历史(我国古代)
1. 在中国古代,《周髀算经》一书已有“径一而周三”的记载,意味着当时π的值为3。2. 汉朝时期,张衡计算出π的平方除以16等于5\/8,从而得出π约等于10的开方(约为3.162)。尽管这个值不够精确,但它简单且易于理解。3. 公元263年,中国数学家刘徽运用“割圆术”来计算圆周率。他先从圆内接...

圆周率的历史
圆周率是中国数学里面的知识,早在1500多年前,祖冲之计算出圆周率π,π值为3.1415926,现在我们都记为π=3.14。魏晋时期的刘徽,汉朝时期的张衡,都有涉及此类数学知识。公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355\/113,此记录在一千年后才打破。刘徽曾用使正多边形的边数逐渐增...

圆周率的历史
圆周率的发现可追溯到古代,当时为了研究圆的周长与直径的关系而产生。在古埃及、古希腊以及古印度等文明中,已有关于圆周率的早期研究。随着数学的发展,这一数值的计算逐渐精确。二、早期发展 随着历史的演进,人们对圆周率的认知不断加深。从最初粗略的观察与估算,到采用特定方法对其进行准确计算,这背后...

关于圆周率的历史
关于圆周率的历史如下:1、一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率=25\/8=3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16\/9的平方,约等于3.1605。2、古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德开创了人类历史上通过理论...

圆周率的历史发展
1、古代文明时期 在古代文明时期,人们已经开始研究圆周率。早在公元前2000年,古埃及人就已经使用了一个近似值,将圆周长估算为直径的3.16倍。古巴比伦人和古印度人也在研究圆周率,并使用了类似的方法进行估算。2、古希腊时期 在古希腊时期,圆周率的研究得到了一定的进展。数学家阿基米德使用了一个...

圆周率的发展历史
圆周率的发展历史可分为古代近似方法、古希腊的逼近方法、数学推导的进展以及计算机计算的突破。1. 古代近似方法 在古代,由于缺乏准确计算方法,人们常使用近似值来计算圆周率。2. 古希腊的逼近方法 古希腊数学家阿基米德大约在公元前250年运用割圆术,逐步逼近圆周率的数值。3. 数学推导的进展 数学家欧拉...

圆周率的历史资料
圆周率的历史资料 1. 古希腊对圆周率的贡献显著。其中,阿基米德是首位通过理论计算圆周率近似值的古希腊大数学家,他的工作发生在公元前287年至212年期间。2. 在中国南北朝时期,数学家祖冲之对圆周率的精确计算做出了重要贡献。他首次将圆周率精算到小数第七位,其数值在3.1415926和3.1415927之间。祖冲之...

圆周率的历史
圆周率的历史如下:1、魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即割圆术),求得π的近似值3.1416。汉朝时,张衡得出π的平方除以16等于5\/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。王蕃(229-267)发现了另一个...

圆周率的由来是什么?
《The Great Pyramid: Why was it built, and who built it》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》显示了圆周率等于分数339\/108,约等于3.139。

相似回答