关于圆周率的历史资料

具体的历史资料

第1个回答  2009-09-10
古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。
第2个回答  2009-09-13
圆周率=

3.141592653589793238462643383279502884197169399375105820974944 592307816406286208998628034825342117067982148086513282306647 093844609550582231725359408128481117450284102701938521105559 644622948954930381964428810975665933446128475648233786783165 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129021960 864034418159813629774771309960518707211349999998372978049951 059731732816096318595024459455346908302642522308253344685035 261931188171010003137838752886587533208381420617177669147303 598253490428755468731159562863882353787593751957781857780532 171226806613001927876611195909216420198938095257201065485863 278865936153381827968230301952035301852968995773622599413891 249721775283479131515574857242454150695950829533116861727855 889075098381754637464939319255060400927701671139009848824012 858361603563707660104710181942955596198946767837449448255379 774726847104047534646208046684259069491293313677028989152104 752162056966024058038150193511253382430035587640247496473263 914199272604269922796782354781636009341721641219924586315030 286182974555706749838505494588586926995690927210797509302955 321165344987202755960236480665499119881834797753566369807426 542527862551818417574672890977772793800081647060016145249192 173217214772350141441973568548161361157352552133475741849468 438523323907394143334547762416862518983569485562099219222184 272550254256887671790494601653466804988627232791786085784383 827967976681454100953883786360950680064225125205117392984896 084128488626945604241965285022210661186306744278622039194945 047123713786960956364371917287467764657573962413890865832645 995813390478027590099465764078951269468398352595709825822620 522489407726719478268482601476990902640136394437455305068203 496252451749399651431429809190659250937221696461515709858387 410597885959772975498930161753928468138268683868942774155991 855925245953959431049972524680845987273644695848653836736222 626099124608051243884390451244136549762780797715691435997700 129616089441694868555848406353422072225828488648158456028506 016842739452267467678895252138522549954666727823986456596116 354886230577456498035593634568174324112515076069479451096596 094025228879710893145669136867228748940560101503308617928680 920874760917824938589009714909675985261365549781893129784821 682998948722658804857564014270477555132379641451523746234364 542858444795265867821051141354735739523113427166102135969536 231442952484937187110145765403590279934403742007310578539062 198387447808478489683321445713868751943506430218453191048481 005370614680674919278191197939952061419663428754440643745123 718192179998391015919561814675142691239748940907186494231961 567945208095146550225231603881930142093762137855956638937787 083039069792077346722182562599661501421503068038447734549202 605414665925201497442850732518666002132434088190710486331734 649651453905796268561005508106658796998163574736384052571459 102897064140110971206280439039759515677157700420337869936007 230558763176359421873125147120532928191826186125867321579198 414848829164470609575270695722091756711672291098169091528017 350671274858322287183520935396572512108357915136988209144421 006751033467110314126711136990865851639831501970165151168517 143765761835155650884909989859982387345528331635507647918535 893226185489632132933089857064204675259070915481416549859461 637180270981994309924488957571282890592323326097299712084433 573265489382391193259746366730583604142813883032038249037589 852437441702913276561809377344403070746921120191302033038019 762110110044929321516084244485963766983895228684783123552658 2131449576857262433441893039686424341077322697802807318915 441101044682325271620105265227211166039666557309254711055785 376346682065310989652691862056476931257058635662018558100729 360659876486117910453348850346113657686753249441668039626579 787718556084552965412665408530614344431858676975145661406800 700237877659134401712749470420562230538994561314071127000407 854733269939081454664645880797270826683063432858785698305235 808933065757406795457163775254202114955761581400250126228594 130216471550979259230990796547376125517656751357517829666454 779174501129961489030463994713296210734043751895735961458901 938971311179042978285647503203198691514028708085990480109412
第3个回答  2020-10-21
第4个回答  2018-03-16
圆周率是指圆的周长和直径的比值,圆的周长和直径的比是6+2√3:3。
而3.1415926......本是正6x2ⁿ边率在代替圆周率。正6x2ⁿ边形的周长与过中心点的对角线的比叫做正6x2ⁿ边率。
第5个回答  2018-02-10
π 的 历 史
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为卢道夫数。
之后,西方数学家计算 π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π 值。电子计算机问世后, π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π 值已到4.8亿位。π 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。

圆周率是哪国人发明的?
约在公元530年,印度数学大师阿耶波多算出圆周率约为根号9.8684。婆罗摩笈多采用另一套方法,推论出圆周率等于10的算术平方根。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入...

圆周率的由来是什么?
圆周率的由来是:一块古巴比伦石匾清楚地记载了圆周率=25\/8=3.125,同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16\/9的平方,约等于3.1605。埃及人似乎在更早的时候就知道圆周率了。英国作家John Taylor(1781—1864)在其名著《金字塔》(《The Great Pyramid: Why was it built, and...

为什么圆周率是3.14?
圆周率的历史资料之发展历史 南北朝时代著名 数学 家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355\/113和约率22\/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到...

圆周率的历史是什么?
圆周率的历史:1500多年前,南北朝时期的祖冲之计算出圆周率的值在3.1415926和3.1415927之间,并且得出了两个用分数表示的近似值:约率为22\/7,密率为355\/113。圆周率是圆的周长与直径的比值,一般用希腊字母表示,是一个在数学及物理学中普遍存在的数学常数。也等于圆形之面积与半径平方之比,是精确计算...

圆周率的历史
圆周率是中国数学里面的知识,早在1500多年前,祖冲之计算出圆周率π,π值为3.1415926,现在我们都记为π=3.14。魏晋时期的刘徽,汉朝时期的张衡,都有涉及此类数学知识。公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355\/113,此记录在一千年后才打破。刘徽曾用使正多边形的边数逐渐...

关于圆周率的历史
关于圆周率的历史如下:1、一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率=25\/8=3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16\/9的平方,约等于3.1605。2、古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德开创了人类历史上通过理论...

圆周率历史及精确度的发展
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。今年56岁近藤茂使用的是自己组装的计算机,从去年10月起开始计算,花费约一年时间刷新了纪录。历史地看,人类计算π值的过程从早期的简单测量和计算方法,...

圆周率的历史。
1、圆周率的历史:从古到今的发展 圆周率的历史可以追溯到古代,古巴比伦时期、古埃及、古印度等文明都开始研究圆的性质并试图找到计算圆周率的方法。随着时间的推移,许多数学家都致力于寻找更精确的π值,其中包括英国作家John Taylor在其名著《金字塔》中指出的胡夫金字塔与圆周率的关系。现代数学家们已经...

圆周率的历史(我国古代)
1. 在中国古代,《周髀算经》一书已有“径一而周三”的记载,意味着当时π的值为3。2. 汉朝时期,张衡计算出π的平方除以16等于5\/8,从而得出π约等于10的开方(约为3.162)。尽管这个值不够精确,但它简单且易于理解。3. 公元263年,中国数学家刘徽运用“割圆术”来计算圆周率。他先从圆内接...

圆周率的计算历史
表示圆的周长与直径的比值。它的近似值约为3.14159,但其精确值是一个无限不循环的小数、关于圆周率的计算历史可以追溯到古代文明时期。1、 古代埃及(公元前2500年左右)埃及人创造了一种近似值的计算方法,将一个正六边形的周长与直径相等。这样得到的近似值为3.16,接近于圆周率。2、 古希腊(公元...

相似回答