就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性。从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛。
x可以趋近于正负无穷,也可以趋近于某值,此时y的极限如果存在就可以说此时y是收敛的。需要注意的是:如果y的极限是∞ 此极限也是不存在的。是无穷大的不存在(∞本就是一种不存在的表现形式)。
扩展资料
设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。数列收敛<=>数列存在唯一极限。
收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{Xn}收敛于a,那么它的任一子数列也收敛于a。
那趋于无穷收敛吗
追答收敛的意思就是无限接近于某个值 只是接近 不是等于
本回答被提问者采纳高数里的收敛到底是什么意思啊,不要说定义,通俗一点怎么解释?
就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性。从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛。x可以趋近于正负无穷,也可以趋近于某值,此时y的极限如果存在就可以说此时y是收敛的。需要注意的是:如果y的极限是∞ 此极限也是不存在...
高数里的收敛到底是什么意思啊,不要说定义,通俗一点怎么解释?
在高数中,当我们谈论一个函数的收敛性时,其实就是在说这个函数的行为就像一个疯狂的鸟儿逐渐稳定下来,它的值总是在某个确定的值附近徘徊,不离不弃。简单地说,就是无论函数的输入(比如x)怎样接近无穷大或某个特定值,它的输出(y)都会有一个确定的极限,就像被一根无形的绳子拉回到那个点。...
高等数学中的收敛是什么意思
收敛是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。高数中收敛是指函数有极限。函数收敛准则:关于函数在某点处的收敛定义。对于任意实数c,存在此数大于0,对任意两个数a、b,满足a减b大于0小于c。收敛的定义方式很好的体现了数学分析...
高数中收敛是什么意思
问题一:高数中收敛什么意思 高数中收敛是指函数有极限。函数收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0 问题二:在高数中,什么是发散,什么是收敛 发散就是极限不存在咯,收敛就是极限存在咯,发散收敛是文人的说法,故意整些高大上的词汇,其...
高数---收敛是什么意思
收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。一个函数收敛则该函数必定有界,而一个函数有界则不能推出该函数收敛。要说明的是,数列有界是全域有界,而函数有界仅仅是在去心邻域内局部有界。
高数收敛是什么意思
高数收敛是指会聚于一点,向某一值靠近。1.收敛类型有收敛数列、函数收敛、全局收敛、局部收敛,收敛就是趋于无穷的包括无穷小或者无穷大,该函数总是逼近于某一个值,这就叫函数的收敛性,也就是函数的值总被某个值约束着,就是收敛。2.关于函数在某点处的收敛定义。对于任意实数c,存在此数大于0...
高数中 收敛数列是什么意思
收敛是高数中对于函数及数列极限的一个定义,也就是极限。在数列中即为随着项数n趋近于正无穷的变化过程中,an数列所对应的值无限趋向于一个界,但是不会达到。也可以说它的极限是这个数。 用数学定理解释就是设 {An} 为实数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N ...
高数收敛是什么意思
高数收敛是什么意思 高数中收敛是指函数有极限。函数收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|
高数里的收敛怎么理解
高数里的收敛怎么理解如下:在高等数学中,收敛是一个重要的概念,主要涉及的是函数或数列的极限行为。首先,我们可以理解收敛数列是一种特殊的数列,如果一个数列的每一项都无限接近于某个固定的实数,那么这个数列就被称为收敛数列。换句话说,数列的收敛意味着它会“趋于无穷”,这个无穷可以是无旁大...
高数中收敛什么意思
在高等数学的范畴中,"收敛"这个概念代表着函数的极限存在性。简单来说,当我们谈论一个函数在某点x0的收敛时,意味着无论你如何接近这个点,函数的值都会稳定在一个确定的值附近,无论这个值是有限还是无穷大。这个特性由收敛准则精确描述:对于给定的任意正数b,总能找到一个c,使得当x1和x2都足够...