已知数列{an}的前n项和是Sn,且-1,Sn,an+1成等差数列(n∈N*),a1=1.(1)求数列{an}的通项公式.(2

已知数列{an}的前n项和是Sn,且-1,Sn,an+1成等差数列(n∈N*),a1=1.(1)求数列{an}的通项公式.(2)若数列{bn}满足b1=a1,bn+1=bn+13an(n≥1)求数列{bn}的前n项和Tn.(3)函数f(x)=log3x,设数列{cn}满足cn=1(n+3)[f(an)+2]求数列{cn}的前n项和Rn.

无其他回答

已知数列{an}的前n项和是Sn,且-1,Sn,an+1成等差数列(n∈N*),a1=1...
(1)∵2Sn=an+1-1,当n≥2时,2Sn-1=an-1,∴2(Sn-Sn-1)=an+1-an,∴an+1an=3,∵2a1=a2-1,∴a2=3,a2a1=3,∴{an}是以1为首项,3为公比的等比数列,∴an=3n?1.(2)bn+1=bn+13?3n?1,∴bn?bn?1=13n?1,累加得bn=32(1?13n),∴Tn=b1+b2+…+bn=...

以知数列{an}的前n项和sn,且-1,s,an+1成等差数列,n属于正整数,a1等于...
由-1,s,an+1成等差数列得:sn=an\/2,当n》2时,an=sn-s(n-1)=(an-an-1)\/2移项得:an=-a(n-1)所以数列an是以首项a1=1,公比为-1的等比数列,即an=(-1)的(n-1)次方。

已知数列{an}的前n项和为Sn,首项为a1,且1,an,Sn等差数列.(1)求数列{...
(Ⅰ)由题意知2an=Sn+1,当n=1时,2a1=a1+1,∴a1=1,当n≥2时,Sn=2an-1,Sn-1=2an-1-1两式相减得an=2an-2an-1,(3分)整理得anan?1=2,∴数列{an}是以1为首项,2为公比的等比数列,(5分)∴an=a1?2n-1=1?2n-1=2n-1(6分)(Ⅱ)Tn=1a1+2a2+…+nanTn=...

已知数列{an}的前n项和为Sn,且满足a1=1,A(n+1)=Sn+1 (1)求数列{an}的...
an=S(n-1)+1 a(n+1)-an=an ∴a(n+1)=2an 即an=2^(n-1)T3=30=b1+b2+b3=3b2,b2=10 则(1+b2-d)(4+b2-3)=(2+b2)^2 解得d=2,(d=-5舍去)∴bn=2n+6 Tn=n^n+7n

设数列{an}的前n项和为Sn,且a1=1,Sn=an+1-1.(Ⅰ)求数列{an}的通项公...
解析:(Ⅰ)∵an+1-Sn-1=0①∴n≥2时,an-Sn-1-1=0②①─②得:(an+1?an)?(Sn?Sn?1)=0?(an+1?an)?an=0?an+1an=2(n≥2)(2分)由an+1-2Sn-1=0及a1=1得a2-S1-1=0?a2=S1+1=a1+1=2∴{an}是首项为1,公比为2的等比数列,∴an=2n-1(4分)(Ⅱ)解法一...

已知数列{an}的前n项和为Sn,且(a-1)Sn=a(an-1)(a>0.n∈N*)(1)证明数 ...
1=a(n≥2),∴{an}是等比数列.又{an}的首项a1=a,公比为a,∴an=an.(2)当a=12时,由(1)得Sn=12(1?12n)1?12=1?12n,∴bn=1?12n+λn+λ2n=1+λn+λ?12n,要使{bn}为等差数列,则b1+b3=2b2,即1+λ+λ?12+1+3λ+λ?123=2(1+2λ+λ?122),解得λ=1...

...Sn,且n,an,Sn成等差数列(n∈N*).(1)求数列{an}的通项公式;(2)求S...
由已知,n,an,Sn成等差数列,所以Sn=2an-n,Sn-1=2an-1-(n-1),(n≥2)两式相减得an=Sn-Sn-1=2an-2an-1-1,即an=2an-1+1,两边加上1,得an+1=2(an-1+1),所以数列{an+1}是等比数列,且公比q=2,又S1=2a1-1,∴a1=1,a1+1=2数列{an+1}的通项公式为an+1...

...an,an+1)(n∈N*)在直线x-y+1=0上,(1)求数列{an}的通
(1)由题意可知:an-an+1+1=0,即an+1-an=1…(2分)∴{an}是以a1=1为首相,d=1的等差数列,∴an=n…(4分)(2)∵an=n,∴Sn=a1+a2+a3+…+an=1+2+3+…+n=n(n+1)2.∵Sn=n(n+1)2…(6分)∴1Sn=2n(n+1)=2(1n?1n+1)…(8分)∴Tn=2(1?12+12?13...

已知数列{an}的前n项和为Sn,a1=1,Sn=nan-n(n-1)(n∈N*).(Ⅰ) 求数列...
n-1)an-1-(n-1)×2移向,两边同除以n-1得出an-a n-1=2所以数列{an}是以2为公差的等差数列,通项公式为an=a1+2(n-1)=2n-1(Ⅱ) bn=2anan+1=2(2n?1)(2n+1)=14(12n?1?12n+1)Tn=14[(11?13)+(13?15)+…+(12n?1?12n+1)]=14(1-12n+1)=2n2n+1 ...

已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn,a2(a-1)an,n(a≠...
(1)由题意aa-1an=Sn+n①∴aa-1an+1=Sn+1+n+1②②-①得1a-1an+1=aa-1an+1,即an+1+1=a(an+1),{an+1}是以a为公比的等比数列.∴an+1=(a1+1)an-1又由aa-1a1=a1+1?a1=a-1∴an=an-1(2)a=89时,bn=n(89)nlg89,bn+1-bn=8-n9?(89)n?lg89当n<8...

相似回答