已知三角形ABC中,角A=90度,AB=AC,D为BC中点 1.如图,E,F分别是AB,AC上的点,DE垂直DF,be=12,ae=5求ef的长

如题所述

1)证明:连接AD
∵AB=AC,∠BAC=90°,D为BC的中点,
∴AD⊥BC,BD=AD.
∴∠B=∠DAC=45°
又BE=AF,
∴△BDE≌△ADF(SAS).
∴ED=FD,∠BDE=∠ADF.
∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.
∴△DEF为等腰直角三角形.

(2)解:△DEF为等腰直角三角形.
证明:若E,F分别是AB,CA延长线上的点,如图所示:
连接AD,
∵AB=AC,
∴△ABC等腰三角形,
∵∠BAC=90°,D为BC的中点,
∴AD=BD,AD⊥BC(三线合一),
∴∠DAC=∠ABD=45°.
∴∠DAF=∠DBE=135°.
又AF=BE,
∴△DAF≌△DBE(SAS).
∴FD=ED,∠FDA=∠EDB.
∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.
∴△DEF仍为等腰直角三角形.追问

大哥我问得是ef的长

追答

额 看错了,你按照我这种格式推理就可以了!

温馨提示:内容为网友见解,仅供参考
无其他回答

已知三角形ABC中,角A=90度,AB=AC,D为BC中点 1.如图,E,F分别是AB,AC上...
又BE=AF,∴△BDE≌△ADF(SAS).∴ED=FD,∠BDE=∠ADF.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)解:△DEF为等腰直角三角形.证明:若E,F分别是AB,CA延长线上的点,如图所示:连接AD,∵AB=AC,∴△ABC等腰三角形,∵∠BAC=90°,D为BC的中点...

...AC,D为BC中点。 1.如图,E,F分别是AB,AC上的点,且BE等于AF求证三角...
证明:由题已知△ABC为等腰直角三角形且D为斜边BC中点 所以BD=DC=AD 角B=角BAD=角DAF=角C=45° AD⊥BC 因为BE=AF 角B =角DAF AD=BD 所以△EBD≌△FAD 所以DE=DF 角BDE=角ADF 因为角BDE+角EDA=90° 所以角ADF+角EDA=90° 所以角EDF=90° ED⊥DF 所以△DEF...

...D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证
证明:①连结AD ∵ ∠BAC=90° 为BC的中点 ∴AD⊥BC BD=AD ∴∠B=∠DAC=45° 又BE=AF ∴△BDE≌△ADF (SAS) ∴ED=FD ∠BDE=∠ADF ∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90° ∴△DEF为等腰直角三角形 ②若E,F分别是AB,CA延长线上的点,如图所示。连结AD∵AB=AC ∠...

已知,如图,三角形ABC中,角A=90°,AB=AC,D是BC边上的中点,E、F分别是A...
证明:(1)连接AD(5分)∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD.(1分)∴∠B=∠DAC=45°(5分)又BE=AF,∴△BDE≌△ADF(SAS)∴∠BDE=∠FDA ∴90°=∠BDE+∠EDA=∠FDA+∠BDE=∠FDE ∴ED⊥FD

...=90°,AB=AC,D为BC的中点。 (1)如图,E,F分别是AB,A
所以△DEF为等腰直角三角形 (2)若E,F分别是AB,CA延长线上的点,如图所示 连结AD,因为AB=AC,∠BAC=90°,D为BC的中点 所以AD=BD,AD⊥BC,所以∠DAC=∠ABD=45° 所以∠DAF=∠DBE=135° 又AF=BE,所以△DAF≌△DBE 所以FD=ED,∠FDA=∠EDB 所以∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠...

...形ABC中,∠A=90°,AB=AC,D为BC的中点,1)如图,E,F分别是AB,AC上的
BD=AD ∠B=∠DAF=45 BE=AF)得ED=FD ∠1=∠2 ∵∠2+∠3=90 ∴∠1+∠3=90 即∠EDF=90 ∴△DEF是等腰直角三角形 如图:连结AD 证三角形ADF≌△BDE(BD=AD ∠EBD=∠DAF=135 BE=AF)得ED=FD ∠1=∠2 ∵∠1+∠3=90 ∴∠2+∠3=90 即∠EDF=90 ∴△DEF是等腰直角三角形...

...D为BC的中点, (1)如图,E,F分别是AB,AC上的点,且BE=AF,求证
F分别是AB,CA延长线上的点,如图所示,连结AD ∵AB=AC,∠BAC=90°,D为BC的中点 ∴AD=BD,AD⊥BC ∴∠DAC=∠ABD=45°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE(SAS)∴FD=ED,∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形...

...°,AB=BC,D是BC边上的中点,E,F分别是AB,AC上的点,且BE=AF,求证ED垂...
证明:连接AD,则AD=BD,如图所示:∵AF=BE,∠B=∠DAC=45°,∴△BED≌△AFD,∴∠ADF=∠BDE,又∵∠BDE+∠EDA=90°,∴∠EDF=∠ADF+∠EDA=90°,即ED⊥DF.

已知:三角形ABC中,∠A=90°,AB=AC,D为BC边中点,(1)如图,E、F分别是A...
(2)连DE,DF,AD,EF.仍然利用三角形ABC是等腰直角三角形,AD=BD,但此时E,F分别在AB,CA延长线上,所以角FAD=角EBD=135度,又AF=BE,所以三角形FAD全等于三角形EBD,因此DE=DF,角EBD=角FDA. 而角EDF=角EDB+角BDF=角ADF+角BDF=角ADB=90度,所以三角形DEF仍为等腰直角三角形。

...AB=AC,D是BC的中点.如图1,E.F分别是AB,ac上的点,且BE=
解:在△BED和△AFD中 BD=AD ∠B=∠FAD=45° BE=AF ∴△BED≌△AFD ∴DE=DF 接下来只要证明∠EDF=90°即可 ∵△BED≌△AFD ∴∠AFD=∠BED ∴∠DFC=∠AED 又∵∠EAD=∠C=45° ∴在△AED和△FDC中,∠ADE=∠FDC ∴∠EDF=∠EDA+∠ADF=∠ADF+∠FDC=90° ∴△DEF为等腰RT△ ...

相似回答