二重积分计算

要给出详细的解题步骤和解题思路。

二重积分的计算方法

温馨提示:内容为网友见解,仅供参考
第1个回答  2014-05-14
本题需要交换积分次序,因为e^(-y^2)直接积分是积分不出来的。
原式=∫∫e^(-y^2)dxdy 积分区域为三角形:0<x<1,x<y<1
∫(0~1)dx∫(x~1)e^(-y^2)dy
=∫(0~1)dy∫(0~y)e^(-y^2)dx
=∫(0~1) ye^(-y^2)dy 被积函数的原函数是-1/2e^(-y^2)
=1/2×(1-1/e)
=(e-1)/(2e)

如有帮助,请采纳追问

=∫(0~1)dy∫(0~y)e^(-y^2)dx

dx,dy为什么要换位?还有∫(0~y)是为什么?

追答

因为e^(-y^2)直接积分是积分不出来的,所以要换位。

还有∫(0~y)是为什么?这个你要画图,就是画0<x<1,x<y<1这个区域,然后换积分次序,积分上下限便会改变。

追问

哦,知道了,谢谢了..

本回答被提问者采纳
第2个回答  2020-03-20

二重积分的计算公式是什么?
【简介】:二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。【定义】:设二元函数z=f(x,y)定...

二重积分的计算公式
=1\/8-1\/12 =1\/24

二重积分 计算
二重积分的计算方法

谁能清楚的告诉我二重积分到底怎么算
二重积分计算方法:化为二次积分。1、直角坐标系中 当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy,从而二重积分可以表示为,由此可以看出二重积分的值是被积函数和积分区域...

2重积分怎么计算
2重积分计算如下:二重积分的计算公式:ydxdy=重心纵坐标×D的面积。二重积分的计算方法主要有两种,分别是直角坐标系法与极坐标法,直角坐标这个方法对于所有的二重积分都适用,积分区域与被积函数中,两者只要有其一是X2+y2的类型,那么就可以酌情考虑使用极坐标法。主要方法是把二重积分化成二次积分,...

二重积分计算公式?
二重积分计算公式为:∬Df(x,y)dxdy = ∫[a,b]dx∫[g(x),h(x)]f(x,y)dy,其中D为积分区域,f(x,y)为被积函数,a、b为x轴方向的积分上下限,g(x)、h(x)为y轴方向的积分上下限。二重积分是在平面区域D上进行的一种积分运算,它的基本思想是将平面区域D划分为无数个...

二重积分的计算公式是什么?
二重积分的计算公式:ydxdy=重心纵坐标×D的面积。二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

二重积分的计算公式?
I=∫∫e^(x+y)dxdy =∫(1,0)dx∫(1,0)e^(x+y)dy =∫(1,0)dx∫(1,0)ex*eydy =∫(1,0)exdx∫(1,0)eydy =ex∫(1,0)*ey∫(1,0)=(e-1)^2

二重积分的计算方法
计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何...

二重积分的计算公式
二重积分经常把直角坐标转化为极坐标形式主要公式有x=ρcosθ y=ρsinθ x^2+y^2=ρ^2 dxdy=ρdρdθ;极点是原来直角坐标的原点以下是求ρ和θ范围的方法:一般转换极坐标是因为有x^2+y^2存在,转换后计算方便题目中会给一个x,y的限定范围,一般是个圆将x=ρcosθ y=ρsinθ代进去可以...

相似回答