函数有界,无界,收敛,发散,有极限 无极限,这些关系之间是什么关系???
函数单调有界必有极限,有极限即必收敛 无界函数当然发散不存在极限了 方便的话就去查查高数书 那里很详细
求 有界 无界 发散 收敛 之间的充分必要关系 谢谢
答:有界:有界限。所有的可能取值都大于某个数,就是下界;都大于某个数,就是上界。连续:变量x从实数a到b的范围连续变化,则函数值也连续变化,没有跳跃现象。收敛:直观的讲,值一般不会走向无穷。1\/x就不行。发散:直观的讲,函数值会走向无穷,或者上下跳跃。可导:直观的讲,函数曲线光滑,...
怎么判断函数的收敛性和发散性?
判断函数是否收敛或者发散:收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的。函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。有界函数指的是对于定义域中的任意一个值,相应的函数值都在一个区间内变化,也就是函数值的绝对值总小于某一个固定值,那...
不收敛一定发散吗
不收敛就一定发散,这是正确的,但是收敛不一定有界,有界一定是收敛的。而且有界函数不一定收敛,无界函数一定发散。收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。经济学中的收敛,分为绝对收敛和条件收敛。...
怎么判断函数和数列是收敛或发散的
2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。3、加减的时候,把高阶的无穷小直接舍去如 1...
函数收敛和发散的定义
1、判断单调性 如果函数单调递增或者单调递减,并且无界,则函数发散。如果函数单调递增或者单调递减,并且有界,则函数收敛。2、判断极限 如果函数的极限存在且有限,则函数收敛。如果函数的极限不存在或者是无穷大,则函数发散。3、判断级数 如果级数的和有限,则函数收敛。如果级数的和为无穷大,则函数...
收敛函数和发散函数怎么判断
函数收敛和发散是数学中重要的概念。收敛是指函数在无限接近某个数值时逐渐趋于稳定,而发散则是指函数在逐渐逼近某个数值时越来越不稳定。判断函数收敛和发散是数学分析的基础之一,具有广泛的应用价值。方法\/步骤 判断单调性:如果函数单调递增或者单调递减,并且无界,则函数发散。如果函数单调递增或者单调...
什么是收敛和发散
收敛序列的极限被称为该序列的收敛值。2、 发散:当函数值序列或积分值序列的极限不存在或为无穷大时,我们称这个序列是发散的。换句话说,如果一个序列的项之间存在无穷增长或无穷阔别,那末这个序列就是发散的。发散序列没有收敛值,而是无界值。收敛和发散是序列的基本性质,它们有助于我们了解序列的...
divergent在数学里什么意思
是的。有界函数不一定收敛,无界函数一定发散。一、1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要...
数列的有界性是数列收敛的什么条件?证明
数列有界是数列收敛的必要而不充分条件。无界数列一定发散,所以有界是收敛的必要条件,但是有界数列不一定收敛,有界数列是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。如果数列有极限,则数列是有界的,数列有界...