若x+y=1,x^2+y^2=2,求x^5+y^5的值

要有过程啊

第1个回答  2010-03-27
x+y=1
两边平方
x^2+2xy+y^2=1
xy=(1-2)/2=-1/2

x^2+y^2=2
两边平方
x^4+2x^2y^2+y^4=4
x^4+y^4=4-2(xy)^2=7/2

x^3+y^3=(x+y)(x^2-xy+y^2)=5/2

x^5+y^5=(x+y)(x^4+y^4)-(x^4y+xy^4)
=(x+y)(x^4+y^4)-xy(x^3+y^3)
=1*7/2-(-1/2)(5/2)
=19/4=4.75本回答被提问者采纳
第2个回答  2010-03-27
x^2+y^2=(x+y)^2-2xy
所以xy=-1/2
(x+y)(x^2+y^2)=x^3+y^3+xy(x+y)=2
所以x^3+y^3=-xy(x+y)+2=5/2
又x^4+y^4=(x^2+y^2)^2-2x^2*y^2=7/2
(x+y)(x^4+y^4)=x^5+y^5+xy(x^3+y^3)=7/2
所以x^5+y^5=-xy(x^3+y^3)+7/2=19/4
第3个回答  2010-03-27
x+y=1
两边平方
x^2+y^2+2xy=1
xy=[1-(x^2+y^2)]/2=-1/2

x^3+y^3=(x+y)(x^2-xy+y^2)=1*(2-1)=1

所以x^5+y^5
=(x^3+y^3)(x^2+y^2)-x^3y^2-x^2y^3
=(x^3+y^3)(x^2+y^2)-(xy)^2(x+y)
=1*2-(-1/2)^2*1
=2-1/4
=7/4
第4个回答  2010-03-27
x=1-y代入x^2+y^2=2
得(y-1)^2=0
所以x=y=1
所以x^5+y^5=2
第5个回答  2010-03-27

RT

若x+y=1,x^2+y^2=2,求x^5+y^5的值
xy=(1-2)\/2=-1\/2 x^2+y^2=2 两边平方 x^4+2x^2y^2+y^4=4 x^4+y^4=4-2(xy)^2=7\/2 x^3+y^3=(x+y)(x^2-xy+y^2)=5\/2 x^5+y^5=(x+y)(x^4+y^4)-(x^4y+xy^4)=(x+y)(x^4+y^4)-xy(x^3+y^3)=1*7\/2-(-1\/2)(5\/2)=19\/4=4.75 ...

已知实数x,y,满足x+y=1,x^2+y^2=2,求x^6+y^6的值
x+y=1两边平方x^2+2xy+y^2=1x^2+y^2=2所以2+2xy=1xy=-1\/2x^3+y^3=(x+y)(x^2-xy+y^2)=1*[2-(-1\/2)]=5\/2x^6+y^6=(x^3+y^3)^2-2x^3y^3=(x^3+y^3)^3-2(xy)^3=(5\/2)^2-2*(-1\/2)^3=25\/4+1\/4=13\/2 ...

若实数x,y满足 x+y=3,x^2+y^2=7,求x^5+y^5的值
则2xy=9-7=2 xy=1 x^3+y^3=(x+y)(x^2-xy+y^2)=3×(7-1)=18 (x^2+y^2)(x^3+y^3)=x^5+x^2y^3+y^2x^3+y^5 将xy=1代入上式 得x^5+y^5+y+x =x^5+y^5+3 又(x^2+y^2)(x^3+y^3)=7×18 =126 即 x^5+y^5+3=126 则 x^5+y^5=123 ...

x+y=1 x^ +y^ =2,求x^5+y^5
展开全部 (x+y)²=x²+y²+2xy=1,xy=-1\/2,(x+y)³=x³+y³+3xy(x+y)=1,x³+y³=5\/2,(x²+y²)²=4,x^4 +y^4=7\/2,(x+y)(x^4 +y^4)=x^5+y^5+xy(x³+y³),x^5+y^5-1\/2*5\/2=7\/2,x^5+y^5=19\/4 已赞过 已踩过< 你对这个回答的...

...y^2=y+1,且x≠y。1.求证x+y=1;2.求x^5+y^5的值
1.证明:由x^2-y^2=(x+y)(x-y)代入x^2 y^2得x+1-y-1=(x+y)(x-y)得x-y=(x+y)(x-y)因为x不等于y 所以 x+y=1 2.x^5+y^5=x2x2x+y2y2y 把x2 y2入 上式得x(x+1)^2+y(y+1)^2 (x+1)^2 (y+1)^2展开继续代入 得2+3(x^2+y^2)继续展x2 y2代入...

已知x^2=x+1,y^2=y+1且x不等于y(1)求证x+y=1(2)求x^5+y^5的值
x,y是z^2-z-1=0的两个不同根,所以x+y=1,x*y=-1.x^5+y^5=(x+y)*(x^4-x^3*y+x^2*y^2-x*y^3+y*4)=(x+y)*[(x^4+y^4)-xy(x^2-xy+y^2)]=(x+y)*[((x+y)^2-2xy)^2-2x^2*y^2-xy((x+y)^2-3xy)]11 ...

已知x+y=1,x^2+y^2=3,求(1)x^3+y^3的值,(2)x^5+y^5的值
由已知得,xy=[(x+y)^2-(x^2+y^2)]\/2=-1 (1)x^3+y^3=(x^2+y^2)(x+y)-xy^2-x^2y=(x^2+y^2)(x+y)-xy(X+y)=3*1+1=4 (2)x^4+y^4=(x^3+y^3)(x+y)-xy(x^2+y^2)=7 而x^2y^2=[(x^2+y^2)^2-(x^4+y^4)]\/2=1 x^5+y^5=(x^3+...

已知x+y=-1, xy=5 求x五次方+y五次方的值
所以 x^2+y^2 = -9 (这里的 x、y 很明显不是实数),由 (x+y)^3 = x^3+y^3+3xy(x+y) 得 -1 = x^3+y^3 +3*5*(-1) ,因此 x^3+y^3 = 14 ,所以 (x^2+y^2)*(x^3+y^3) = (-9)*14 ,展开得 x^5+y^5+(xy)^2*(x+y) = -126 ,所以 x^5+y^...

已知x+y=1,x^2+y^2=2则x^6+y^6的值是?
因为(x+y)^2=x^2+y^2+2xy 所以xy=(1-2)\/2=-1\/2 (x^2+y^2)^3 =x^6+y^6+3x^4y^2+3x^2y^4 =x^6+y^6+3x^2y^2(x^2+y^2)=> x^6+y^6=(x^2+y^2)^3 - 3x^2 y^2(x^2+y^2)=2^3-3=5

已知实数x、y满足:x+y=1,x^2+y^2=2,求 1\/x+1\/y和x^3+y^3的值
希望有帮助!呵呵!

相似回答
大家正在搜