已知X^2=x+1,y^2=y+1,且x≠y。1.求证x+y=1;2.求x^5+y^5的值

如题所述

1.证明:由x^2-y^2=(x+y)(x-y)
代入x^2 y^2得x+1-y-1=(x+y)(x-y)
得x-y=(x+y)(x-y)
因为x不等于y 所以 x+y=1
2.x^5+y^5=x2x2x+y2y2y
把x2 y2入
上式得x(x+1)^2+y(y+1)^2
(x+1)^2 (y+1)^2展开继续代入
得2+3(x^2+y^2)
继续展x2 y2代入得 2+3(x+y+2)=2+3*3=11
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-03-20
由已知 ;x,y是方程t2-t-1=0的两根 x+y=1,xy=-1
x5+y5=x3x2+y3y2=x(x+1)2+y(y+1)2=x3+2x2+x+y3+2y2+y
=x(x+1)+2(x+1)+x+y(y+1)+2(y+1)+y
=x+1+x+2x+2+x+y+1+y+2y+2+y
=5x+5y+6=11
第2个回答  2012-12-09
(1)证明:∵x2=x+1,y2=y+1,
∴x2-y2=x-y
∴x+y=1(x≠y)
(2)解:∵x2=x+1,y2=y+1,∴x3=x2+x,y3=y2+y,x4=x3+x2,y4=y3+y2,x5=x4+x3,y5=y4+y3,
∴x5+y5
=x4+x3+y4+y3
=x3+x2+x2+x+y3+y2+y2+y,
=x2+x+x2+x2+x+y2+y+y2+y2+y,
=3(x2+y2)+2(x+y),
=3(x+1+y+1)+2(x+y),
=3×3+2,
=11.
第3个回答  2011-03-20
(1).证明:因为,X^2=x+1,y^2=y+1,且x≠y (2).通过X^2=x+1,y^2=y+1算下,带进去就行了
所以,X-Y≠0
所以,X^2-Y^2=X+1-(Y+1)
(X+Y)(X-Y)=X-Y
所以,X+Y=1追问

怎么代?

第4个回答  2011-03-20
解:由已知得原式=x^2-x-1=0 1;y^2-y-1=0 2;1-2得x^2-y^2+y-x=0 x-y=x^2-y^2 两边同除以x-y 得x+y=1 第二问如第一个回答者所示

已知X^2=x+1,y^2=y+1,且x≠y。1.求证x+y=1;2.求x^5+y^5的值
1.证明:由x^2-y^2=(x+y)(x-y)代入x^2 y^2得x+1-y-1=(x+y)(x-y)得x-y=(x+y)(x-y)因为x不等于y 所以 x+y=1 2.x^5+y^5=x2x2x+y2y2y 把x2 y2入 上式得x(x+1)^2+y(y+1)^2 (x+1)^2 (y+1)^2展开继续代入 得2+3(x^2+y^2)继续展x2 y2代入...

已知x^2=x+1,y^2=y+1且x不等于y(1)求证x+y=1(2)求x^5+y^5的值
x,y是z^2-z-1=0的两个不同根,所以x+y=1,x*y=-1.x^5+y^5=(x+y)*(x^4-x^3*y+x^2*y^2-x*y^3+y*4)=(x+y)*[(x^4+y^4)-xy(x^2-xy+y^2)]=(x+y)*[((x+y)^2-2xy)^2-2x^2*y^2-xy((x+y)^2-3xy)]11 ...

已知x 2 =x+1,y 2 =y+1,且x≠y. (1)求证:x+y=1;(2)求x 5 +y 5 的值.
(1)证明:∵x2=x+1,y2=y+1,∴x2-y2=x-y∴x+y=1(x≠y)(2)∵x2=x+1,y2=y+1,∴x3=x2+x,y3=y2+y,x4=x3+x2,y4=y3+y2,x5=x4+x3,y5=y4+y3,∴x5+y5=x4+x3+y4+y3=x3+x2+x2+x+y3+y2+y2+y,=x2+x+x2+x2+x+y2+y+...

已知x^2=x+1,y^2=y+1,且x≠y.(1)求证:x+y=1.(2)求x^4+y^4的值
两式相减得x^2-y^2=(x+1)-(y+1),即(x+y)(x-y)=(x-y),因为x不等于y,所以x-y不等于0,故x+y=1 x^4+y^4=(x+1)^2+(y+1)^2=x^2+2x+1+y^2+2y+1=(x+1)+(y+1)+2(x+y)+2=3(x+y)+4=3+4=7

已知x的平方=x+1,y的平方=y+1,且x不等于y,求证x+y=1
∵x²=x+1,y²=y+1,∴x²-y²=x-y,∴﹙x+y﹚﹙x-y﹚=x-y ∵x≠y,∴x-y≠0,方程两边都除以﹙x-y﹚得∶x+y=1

x∧2=x+1,y^2=y+1,且x不等于y。
x∧2=x+1,y^2=y+1,且x不等于y x,y是方程:z^2-z-1=0的两个不等实根 x+y=1,xy=-1 x^2+y^2=(x+y)^2-2xy=1+2=3 x^3+y^3=(x+y)(x^2-xy+y^2)=1*(3+1)=4 x^4+y^4=(x^2+y^2)^2-2x^2y^2=9-2=7 (x+y)(x^4+y^4)=(x^5+y^5)-xy(x^3+...

若x+y=1,x^2+y^2=2,求x^5+y^5的值
x^2+2xy+y^2=1 xy=(1-2)\/2=-1\/2 x^2+y^2=2 两边平方 x^4+2x^2y^2+y^4=4 x^4+y^4=4-2(xy)^2=7\/2 x^3+y^3=(x+y)(x^2-xy+y^2)=5\/2 x^5+y^5=(x+y)(x^4+y^4)-(x^4y+xy^4)=(x+y)(x^4+y^4)-xy(x^3+y^3)=1*7\/2-(-1\/2)(5\/2...

已知实数X.Y满足(x+1)^2+y^2=1,则X+Y的最小值
令x=-1+cosa,y=sina,则x+y=-1+sina+cosa=-1+根号2倍sin(45度+a)大于等于-(1+根号2)

ⅹ^2+y^2=1,求(x+1)(5y+2)最大值?
考虑圆x^2+y^2=1上的点(x,y),将原式写为函数f(x,y)则f(x,y)=(x+1)(5y+2)目标是求f(x,y)的最大值 通过优化方法,求导并令梯度为0,得到等式 对于x,有5y+3=0 对于y,有x+5=0 联立两式解得x=-5\/6,y=-3\/10 将x和y代入原式得f(x,y)的最大值 f(-5\/6,-3\/10...

已知x^2-x=1,y^2-y=1,且x≠y,求x^2+2xy+y^2的值
x^2-x=1 y^2-y=1 两式相减得 x^2-y^2-x+y=0 (x-y)(x+y)-(x-y)=0 (x-y)(x+y-1)=0 因为x≠y 所以x+y-1=0 x+y=1 x^2+2xy+y^2 =(x+y)^2 =1^2 =1

相似回答