设x、y、z是三个互不相等的数,且x+[1/y]=y+[1/z]=z+[1/x],则xyz=______.?

如题所述

第1个回答  2022-10-11
解题思路:分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的情形,由左边的两个等式可得出zy=[y−z/x−y],同理可得出zx=[z−x/y−z],xy=[x−y/z−x],三式相乘可得出xyz的值.
由已知x+[1/y]=y+[1/z]=z+[1/x],
得出x+[1/y]=y+[1/z],
∴x-y=[1/z]-[1/y]=[y−z/zy],
∴zy=[y−z/x−y]①
同理得出:
zx=[z−x/y−z]②,
xy=[x−y/z−x]③,
①×②×③得x2y2z2=1,即可得出xyz=±1.
故答案为:±1.
,3,x+1/y=y+1/z=z+1/x
由x+1/y=y+1/z可得
①x-y=(y-z)/zy
同理可得
②y-z=(z-x)/xz
③x-z=(y-x)/xy
①*②*③
化简就会有
xyz=±1,1,

...z是三个互不相等的数,且x+[1\/y]=y+[1\/z]=z+[1\/x],则xyz=...
xy=[x−y\/z−x]③,①×②×③得x2y2z2=1,即可得出xyz=±1.故答案为:±1.,3,x+1\/y=y+1\/z=z+1\/x 由x+1\/y=y+1\/z可得 ①x-y=(y-z)\/zy 同理可得 ②y-z=(z-x)\/xz ③x-z=(y-x)\/xy ①*②*③ 化简就会有 xyz=±1,1,

设x,y,z是三个互不相等的数,且x+1\/y=y+1\/z=z+1\/x,则xyz=?
由x+1\/y=y+1\/z得x-y=(y-z)\/yz (1),再由x+1\/y=z+1\/x得x-z=1\/x-1\/y=(y-x)\/xy,再将(1)代入得xyyz=(z-y)\/(x-z) (2)同理,xxyz=(x-y)\/(y-z) (3),xyzz=(z-x)\/(x-y) (4)(2)(3)(4)相乘得xyz=1 ...

以知x,y,z是三个互不相等的实数,且x+x分之一=y+y分之一=z+z分之一...
x+1\/x=y+1\/y=z+1\/z 则:x-y=1\/y-1\/x x-y=(x-y)\/xy xy=1 同理:yz=1 zx=1 相乘 (xyz)^2=1 | xyz |=1

问X.Y.Z是三个互不相等的数。X+1\/Y=Y+1\/Z=Z+1\/X,那么xyz=?
∵x、y、z不等,∴x-y、y-z、x-z都不为0。∵x+1\/y=y+1\/z=z+1\/x。∴由x+1\/y=y+1\/z,得:x-y=1\/z-1\/y=(y-z)\/(yz),∴yz=(y-z)\/(x-y)。···① 由x+1\/y=z+1\/x,得:x-z=1\/x-1\/y=(y-x)\/(xy),∴xy=(y-x)\/(...

已知x,y,z为三个互不相等的整数,且x+1\/y=y+1\/z=z+1\/x,求证x²y²z...
为x+1\/y=y+1\/z所以x-y=1\/z-1\/y即x-y=(y-z)\/yz 同理y-z=(z-x)\/xz (1)z-x=(x-y)\/xy (2)那么代入1式x-y=(y-z)\/yz 再代入2式(z-x)\/xyz²=(x-y)\/x²y²z²即x-y=(x-y)\/x²y²z²又x,y,z为三个互不相等的...

已知:x,y,z是三个不相等实数,且x+1\/y=y+1\/z=z+1\/x,求证:(xyz)平方=1...
令X+1\/Y=Y+1\/Z=Z+1\/X=1 则 X=1-1\/Y =-(1-Y)\/Y Y=1-1\/Z 则 Z=1\/(1-Y)(XYZ)^2=[-(1-Y)\/Y*Y*1\/(1-Y)]^2=(-1)^2=1

x,y,z为3不相等非0实数 且x+1\/y=y+1\/z=z+1\/x
因为x+1\/y=y+1\/z=z+1\/x 所以1\/y-1\/z=y-x 即(z-y)=(y-x)yz (1)同理(y-x)=(x-z )xy (2)(x-z)=(z-y)xz (3)(1)(2)(3)两边分别相乘得:(z-y)(y-x)(x-z)(xyz)^2=(y-x)(x-z)(z-y)再由x,y,z为3不相等非0实数得 (xyz)^2=1 ...

已知x、y、z为三个不相等的实数,且x+1\/y=y+1\/z=z+1\/x,则x^2*y^2*z...
由x+1\/y=y+1\/z得x-y=(y-z)\/yz (1),再由x+1\/y=z+1\/x得x-z=1\/x-1\/y=(y-x)\/xy,再将(1)代入得xyyz=(z-y)\/(x-z) (2)同理,xxyz=(x-y)\/(y-z) (3),xyzz=(z-x)\/(x-y) (4)(2)(3)(4)相乘得xyz=1 x^2*y^2*z^2=1 求采纳为满意回答。

已知X,Y,Z为不相等的实数,且X+1\/Y=Y+1\/Z=Z+1\/X,求X²Y²Z²_百...
因为x+1\/y=y+1\/z所以x-y=1\/z-1\/y即x-y=(y-z)\/yz 同理y-z=(z-x)\/xz,z-x=(x-y)\/xy 所以x-y=(y-z)\/yz=(z-x)\/xyz^2=(x-y)\/x^2y^2z^2 又x不等于y不等于z,即x-y不为0 所以x^2y^2z^2=1

设x,y,z为互不相等的非零实数,且x+1y=y+1z=z+1x.求证:x2y2z2=1_百 ...
证明:由已知x+1y=y+1z=z+1x得出:∵x+1y=y+1z,∴x-y=1z?1y,x-y=y?zyz,∴yz=y?zx?y,①同理得出zx=z?xy?z,②xy=x?yz?x.③①×②×③得x2y2z2=1.

相似回答
大家正在搜