问X.Y.Z是三个互不相等的数。X+1\/Y=Y+1\/Z=Z+1\/X,那么xyz=?
∵x、y、z不等,∴x-y、y-z、x-z都不为0。∵x+1\/y=y+1\/z=z+1\/x。∴由x+1\/y=y+1\/z,得:x-y=1\/z-1\/y=(y-z)\/(yz),∴yz=(y-z)\/(x-y)。···① 由x+1\/y=z+1\/x,得:x-z=1\/x-1\/y=(y-x)\/(xy),∴xy=(y-x)\/(...
设x、y、z是三个互不相等的数,且x+[1\/y]=y+[1\/z]=z+[1\/x],则xyz=...
xy=[x−y\/z−x]③,①×②×③得x2y2z2=1,即可得出xyz=±1.故答案为:±1.,3,x+1\/y=y+1\/z=z+1\/x 由x+1\/y=y+1\/z可得 ①x-y=(y-z)\/zy 同理可得 ②y-z=(z-x)\/xz ③x-z=(y-x)\/xy ①*②*③ 化简就会有 xyz=±1,1,
以知x,y,z是三个互不相等的实数,且x+x分之一=y+y分之一=z+z分之一...
x+1\/x=y+1\/y=z+1\/z 则:x-y=1\/y-1\/x x-y=(x-y)\/xy xy=1 同理:yz=1 zx=1 相乘 (xyz)^2=1 | xyz |=1
x,y,z为3不相等非0实数 且x+1\/y=y+1\/z=z+1\/x
因为x+1\/y=y+1\/z=z+1\/x 所以1\/y-1\/z=y-x 即(z-y)=(y-x)yz (1)同理(y-x)=(x-z )xy (2)(x-z)=(z-y)xz (3)(1)(2)(3)两边分别相乘得:(z-y)(y-x)(x-z)(xyz)^2=(y-x)(x-z)(z-y)再由x,y,z为3不相等非0实数得 (xyz)^2=1 ...
已知:x,y,z是三个不相等实数,且x+1\/y=y+1\/z=z+1\/x,求证:(xyz)平方=1
令X+1\/Y=Y+1\/Z=Z+1\/X=1 则 X=1-1\/Y =-(1-Y)\/Y Y=1-1\/Z 则 Z=1\/(1-Y)(XYZ)^2=[-(1-Y)\/Y*Y*1\/(1-Y)]^2=(-1)^2=1
...x,y,z为三个互不相等的整数,且x+1\/y=y+1\/z=z+1\/x,求证x²y²z...
为x+1\/y=y+1\/z所以x-y=1\/z-1\/y即x-y=(y-z)\/yz 同理y-z=(z-x)\/xz (1)z-x=(x-y)\/xy (2)那么代入1式x-y=(y-z)\/yz 再代入2式(z-x)\/xyz²=(x-y)\/x²y²z²即x-y=(x-y)\/x²y²z²又x,y,z为三个互不相等的...
X、y、z为三个不相等的有理数,且x+1\/y=y+1\/z=z+1\/x,求证:x2y2z2=1
解:∵ x + 1\/y = y + 1\/z ∴ x - y = 1\/z - 1\/y 即 x - y = ( y - z ) \/ yz 同样的道理 y - z = ( z - x ) \/ xz ………1式 z - x = ( x - y )\/ xy ………2式 1式 + 2式,得 y - x = ( z - x ) \/ xz + ( x - y ) \/ xy = -...
...y、z为三个不相等的实数,且x+1\/y=y+1\/z=z+1\/x,则x^2*y^2*z^2=...
由x+1\/y=y+1\/z得x-y=(y-z)\/yz (1),再由x+1\/y=z+1\/x得x-z=1\/x-1\/y=(y-x)\/xy,再将(1)代入得xyyz=(z-y)\/(x-z) (2)同理,xxyz=(x-y)\/(y-z) (3),xyzz=(z-x)\/(x-y) (4)(2)(3)(4)相乘得xyz=1 x^2*y^2*z^2=1 求采纳为满意回答。
不相等实数X,Y,Z满足X+1\/Y=Y+1\/Z=Z+1\/X,求(xyz)的值
1)x-z=1\/x-1\/y=(y-x)\/(yx) (2)y-z=1\/x-1\/z=(z-x)\/(xz) (3)(1)*(2)*(3)(x-y)(x-z)(y-z)=(y-z)(y-x)(z-x)\/(x^2y^2z^2)(y-x)(z-x)(y-z)=(y-z)(y-x)(z-x)\/(x^2y^2z^2)因x,y,互不相等,所以 x^2y^2z^2=1 xyz=1或xyz=-1 ...
已知X,Y,Z为不相等的实数,且X+1\/Y=Y+1\/Z=Z+1\/X,求X²Y²Z²
因为x+1\/y=y+1\/z所以x-y=1\/z-1\/y即x-y=(y-z)\/yz 同理y-z=(z-x)\/xz,z-x=(x-y)\/xy 所以x-y=(y-z)\/yz=(z-x)\/xyz^2=(x-y)\/x^2y^2z^2 又x不等于y不等于z,即x-y不为0 所以x^2y^2z^2=1