从1\/1*2+1\/2*3+...+1\/2002*2003怎么计算
先帮你分析一下:1\/1*2=1-1\/2,1\/(2*3)=1\/2-1\/3……1\/2002*2003=1\/2002-1\/2003记住这个式子:1\/(m*n)=1\/m-1\/n,m、n为正整数,所以原式=1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+…-1\/2002+1\/2002-1\/2003=1-1\/2003=2002\/2003,明白了没?
从1\/1*2+1\/2*3+.+1\/2002*2003怎么计算
1\/1*2+1\/2*3+.+1\/2002*2003 =(1-1\/2)+(1\/2-1\/3)+.+(1\/2002-1\/2003)=1-1\/2+1\/2-1\/3+.+1\/2002-1\/2003 =1-1\/2003 =2002\/2003
1\/1x2+1\/2x3+1\/3x4...1\/2002x2003 如题,
=(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+.+(1\/2002-1\/2003)=1-1\/2003 =2002\/2003
1\/(1*2)+1\/(2*3)+1\/(3*4)+...+1\/(2002*2003)=\/
总和S=1-1\/2+1\/2-1\/3+...+1\/(n-1)-1\/n+1\/n-1\/(n+1)=1-1\/(n+1)在这里,n=2002,把它代入上式计算就是了.答案是S=2002\/2003
分数简便运算1\/1*2+1\/2*3+1\/3*4+...+1\/2001*2002=?
解:[1/n﹙n+1﹚]=﹙1/n﹚-[1/﹙n+1﹚]∴[1\/﹙1×2﹚]+[1\/﹙2×3﹚]+[1\/﹙3×4﹚+...+[1\/﹙2001×2002﹚]原式=1-﹙1/2﹚+﹙1/2﹚-﹙1/3﹚+﹙1/3﹚-﹙1/4﹚+………+﹙1/2001﹚-﹙1/2002﹚=1-﹙1/2002﹚=2001/2002 回答完毕,望采纳...
1\/1*2+1\/2*3+1\/3*4+...+1\/2002*2003+1\/2003*2004
根据1\/n(n+1)=1\/n-1\/(n+1)1\/1*2+1\/2*3+1\/3*4+...+1\/2002*2003+1\/2003*2004 =1-1\/2+1\/2-1\/3+1\/3+1\/4+...+1\/2003-1\/2004 =1-1\/2004 =2003\/2004 参考资料:祝你新年快乐!进步!
1×2分之1+2×3分之1。2002×2003分之的结果是多少
原式=1-1\/2+1\/2-1\/3+1\/3-1\/4...+1\/2002-1\/2003 =1-1\/2003 =2002\/2003 注:1\/1×2=1-1\/2 1\/2×3=1\/2-1\/3 化简(1-(a-2)分之1)÷2a-4分之3-a的结果是多少 { 1-1\/(a-2) } ÷ (3-a)\/(2a-4) = (a-2-1)\/(a-2) × 2(a-2)\/(3-a) ...
1\/1x2+1\/2x3+1\/3x4+1\/4x5...1\/2001x2002 简便计算
1\/1x2+1\/2x3+1\/3x4+1\/4x5...1\/2001x2002 =1-1\/2+1\/2-1\/3+1\/3-1\/4+.+1\/2001-1\/2002 =1-1\/2002 =2001\/2002
1乘2分之1,加2乘3分之一...2002乘2003分之一得多少? 在线提问!速度啊...
等于1减2分之1加2分之1减3分之1...加2002分之1减2003分之1,中间抵消为0,最后等于1减2003分之1,等于2003分之2002.
初一数学在线解答1\/1x2+1\/2x3+...+1\/2002x2003+1\/2003x2004+1\/2004...
原式 =1-1\/2+1\/2-1\/3+...1\/2002-1\/2003+1\/2003-1\/2004+1\/2004-1\/2005 =1-1\/2005 =2004\/2005