把圆按16等份剪开,摆成一个大梯形,你能据此写出圆的面积公式的推导过程吗?(提示:用梯形面积公式。)
把这16个小扇形想象成16个近似等腰三角形,把它们摆成梯形。上底是3个弧长,下底是5个弧长,高相当于2个半径。
根据梯形面积=(上底+下底)×高÷2 ,可以算出这个近似梯形的面积:
(3个弧长+5个弧长)×2r÷2
=8个弧长×2r÷2
=16个弧长×r÷2
=圆周长×r÷2
=2π r×r÷2
=π r^2
因为S圆=π*r的二次方,所以S圆=π*r的二次方=近似梯形的面积
扩展资料:
梯形是只有一组对边平行的四边形 。平行的两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底;另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形。两腰相等的梯形叫等腰梯形。
梯形的面积公式:设梯形的上底长为a,下底长为b,高为h,面积为s
(上底+下底)×高÷2, 用字母表示:S=(a+b)×h÷2
资料来源:百度百科—梯形
把这16个小扇形想象成16个近似等腰三角形,把它们摆成梯形。上底是3个弧长,下底是5个弧长,高相当于2个半径。
根据梯形面积=(上底+下底)×高÷2 ,可以算出这个近似梯形的面积:
(3个弧长+5个弧长)×2r÷2
=8个弧长×2r÷2
=16个弧长×r÷2
=圆周长×r÷2
=2π r×r÷2
=π r^2
因为S圆=π*r的二次方,所以S圆=π*r的二次方=近似梯形的面积
与圆相关的公式:
1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)。
6、扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)。
7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。
于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。
本回答被网友采纳把圆按16等份剪开,摆成一个大梯形,你能据此写出圆的面积公式的推导过程...
因为S圆=π*r的二次方,所以S圆=π*r的二次方=近似梯形的面积
把圆按16等份剪开,摆成一个大梯形,你能据此写出圆的面积公式的推导过程...
梯形的腰是圆的半径
把圆按16等份剪开,摆成一个梯形,你能据此写出圆的面积公式的推导过程...
16分之1圆,看做一个1\/16圆周做底,R做高的三角形,面积是:R*(2R*PI\/16)\/2=R^2 *PI\/16 所以圆面积就把上面这个乘16,得到圆面积公式PI*R^2 你要非得用梯形公式,无非是上底为0
把圆按16等份剪开,摆成一个梯形,写出圆的面积公式的推导过程【提示;用...
梯形的上底=圆周长的16分之3 梯形的下底=圆周长的16分之5 梯形的高=圆的直径
把圆按16等份剪开,摆成一个梯形,写出圆的面积公式的推导过程【提示;用...
圆锥的体积等于底面积乘以高乘以三分之一。现在需要解决的是两个圆锥的高和底面积。大圆锥的底面积就是以梯形下底长为直径的圆面积。小圆锥的底面积就是以梯形伤底长为直径的圆面积。大圆锥的高就是梯形的高。小圆锥的高需要做个辅助线,构成直角三角形,然后算直角三角形的高。这个辅助线应该这样作...
怎么用三角形和梯形的面积公式推导圆的面积公式(为什么)
将圆沿直径分成若干小份,再将圆分成两大部分,上下镶嵌成一个很接近梯形的图形,面积就是S=[(πR πR)×R]\/2=πR^2
把圆等分16份三角形,推导圆的面积公式带图形的
h(高)=2r,上底=16\/3C (圆的周长),下底=16\/5C,S(梯形面积公式)=(上+下)h*2已以上提供的信息来推倒S圆=πr2(πr的平方)。在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆(Circle)。圆有无数条对称轴。圆形是一种圆锥曲线,由平行于圆锥底面的平面...
圆的面积公式用梯形面积公式推导
把这16个小扇形想象成16个近似等腰三角形,把它们摆成梯形。上底是3个弧长,下底是5个弧长,高相当于2个半径。根据梯形面积=(上底+下底)×高÷2 ,可以算出这个近似梯形的面积:(3个弧长+5个弧长)×2r÷2 =8个弧长×2r÷2 =16个弧长×r÷2 =圆周长×r÷2 =2π r×r÷2 =π r...
把一个圆分成若干等份后,拼成近似的梯形或三角形,可以推出圆面积...
圆的面积=半径×半径×兀梯形面积=(上底+下底)×高÷2其中:上底+下底=圆周长=2×半径×兀,高=半径∴梯形面积=2×半径×半径×兀\/2=半径×半径×兀=圆的面积 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 Kasugano渺 2018-02-04 · TA获得超过674个赞 知道答主 回答量:2 采纳率:50...
圆的面积的推导过程
学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。 教学过程: 一、设疑导入 1.启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。(微机演示) 2.微机显示一个圆,再把圆涂成红色。提问:这是什么图形?看到圆想到什么?圆所围平面部分的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?请...