怎么证明y=xcosx不是周期函数?

如题所述

反证法:假设函数f(x)= xcosx存在正周期T>0,则 (x+T)cos(x+T)= xcosx对一切x成立,取x=0于是TcosT= 0,所以T=π/2+kπ:再取x=π/2于是(T+π/2)cos(T+π/2)=0所以T=nπ,即须 T=nπ=π/2+kπ,T无解,矛盾。所以y=xcosx不是周期函数。

拓展资料:

1、定律定义:设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x);则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

2、定律性质:

周期函数的性质共分以下几个类型:

(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。

(2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。

(3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。

(4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。

(5)若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。

(6)周期函数f(X)的定义域M必定是至少一方无界的集合。

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-09-18
证明:假设y=xcosx是周期函数
因为周期函数有f(x+T)=f(x)
xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT
所以cosT=1 T=kπ/2
-xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0
-xsinx*sinT-Tsinx*sinT=0
(x+T)sinx*sinT=0
只能是sinT=0 T=kπ和T=kπ/2矛盾
所以不是周期函数追答

祝好运

本回答被提问者采纳

怎么证明y=xcosx不是周期函数?
反证法:假设函数f(x)= xcosx存在正周期T>0,则 (x+T)cos(x+T)= xcosx对一切x成立,取x=0于是TcosT= 0,所以T=π\/2+kπ:再取x=π\/2于是(T+π\/2)cos(T+π\/2)=0所以T=nπ,即须 T=nπ=π\/2+kπ,T无解,矛盾。所以y=xcosx不是周期函数。

怎么证明y=xcosx不是周期函数?
证明:假设y=xcosx是周期函数,因为周期函数有f(x+T)=f(x)xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT 所以cosT=1 T=kπ\/2 -xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0 -xsinx*sinT-Tsinx*sinT=0 (x+T)sinx*sinT=0 只能是sinT=0 T=kπ和T=kπ\/2矛盾 ...

y= xcosx是不是周期函数?
不是。证明如下:假设y=xcosx是周期函数,则存在T>0使得∀ x∈R,有 (x+T)cos(x+T)=xcosx,代入x=0得,TcosT=0;代入x=-T得,0=-Tcos(-T);由以上二式可得 TcosT=-Tcos(-T)=-TcosT,故T=0或T=½(2k+1)π(k∈Z)。其中,T=0与假设矛盾,而将T=½(2k...

证明y=xcosx不是周期函数。需要很详细正规的证明步骤!
证明:假设y=xcosx是周期函数,因为周期函数有f(x+T)=f(x)xcosx=(x+T)cos(x+T)=xcosx*cosT-xsinx*sinT+Tcosx*cosT-Tsinx*sinT 所以cosT=1 T=kπ\/2 -xsinx*sinT+Tcosx*cosT-Tsinx*sinT=0 -xsinx*sinT-Tsinx*sinT=0 (x+T)sinx*sinT=0 只能是sinT=0 T=kπ和T=kπ\/2矛...

y=xcosx是不是周期函数
y=xcosx不是周期函数;证明:假设函数f(x)= xcosx存在正周期T>0,则 (x+T)cos(x+T)= xcosx对一切x成立,取x=0于是TcosT= 0,所以T=π\/2+kπ:再取x=π\/2于是(T+π\/2)cos(T+π\/2)=0所以T=nπ,即须 T=nπ=π\/2+kπ,T无解,矛盾。所以y=xcosx不是周期函数。

y=xcosx是周期函数吗
y=xcosx不是周期函数;证明:假设函数f(x)=xcosx存在正周期T>0,则(x+T)cos(x+T)=xcosx对一切x成立,取x=0于是TcosT=0,所以T=π\/2+kπ...

怎么证明y=xcosx不是周期函数
假如是周期函数,那肯定有x*cos(x)=(x+T)*cos(x+T),T为周期,T>0;将右边展开有x*cos(x)=(x+T)*cos(x+T)=x*cos(x)*cos(T)-x*sin(x)*sin(T)+T*cos(x)*cos(T)-T*sin(x)*sin(T),由此可见,cos(T)必须为1,且-x*sin(x)*sin(T)+T*cos(x)*cos(T)-T*sin(x...

怎么证明 XcosX不是周期函数?
解析:观察一些零点:f(0)=f(π\/2)=f(3π\/2)=f(5π\/2)=0,f(π)=π.假设f(x)是周期函数,由f(π\/2)=f(3π\/2)=f(5π\/2)=0得到:T=kπ,k∈Z.通过f(0)=f(π\/2)=0 根据周期函数基本特性,T不存在。所以,不是周期函数。

三角函数的周期怎么求 y=xcosx是周期函数吗 怎么证明
不是周期函数.证明:令f(x)=xcosx用反证法证明假设f(x)是周期函数,且T>0是f(x)的周期则对任意的实数x,有f(x)=f(x+T),即(x+T)cos(x+T)=xcosx取x=0,得TcosT=0,于是有cosT=0.(1)又取x=2π,有(2π+T)cos(2π+T)=2πcos...

如何证明y=xcosx不是周期函数??
y是振荡增大型,振荡周期T

相似回答