求和S=1^2+2^2+3^2+...+n^2
简单计算一下即可,答案如图所示
怎么证明1^2+2^2+3^2+……+n^2的求和公式?
1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)\/6。证明过程如下:n^2=n(n+1)-n 1^2+2^2+3^2+.+n^2 =1*2-1+2*3-2+.+n(n+1)-n =1*2+2*3+...+n(n+1)-(1+2+...+n)由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]\/3 所以1*2+2*3+...+n(n+1)=[1*...
求和1^2+2^2+3^2...+N^2=?
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)\/6
1的平方加2的平方...一直加到n的平方和是多少?有公式吗?
=(x+1)[(x+1)+1][2(x+1)+1]\/6 也满足公式 4、综上所述,平方和公式1^2+2^2+3^2+?+n^2=n(n+1)(2n+1)\/6成立,得证。
1^2+2^2+3^2+.+ n^2=多少?
n^2=n(n+1)-n 1^2+2^2+3^2+…+n^2=1*2-1+2*3-2+...+n(n+1)-n =1*2+2*3+..+n(n+1)-(1+2+3+..+n)而n(n+1)=1\/3(n(n+1)(n+2)-n(n+1)(n-1))所以上述=1\/3(1*2*3-1*2*0+2*3*4-1*2*3+3*4*5-2*3*4+...+n(n+1)(n+2)-n(n+...
1的平方加2的平方...一直加到n的平方和是多少?有公式吗?
当需要计算从1的平方到n的平方的和时,有一个简洁的公式:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)\/6。这个结论是通过数学归纳法推导得出的:1.当n=1时,左边的和是1,右边的计算结果也是1,验证了公式在n=1时成立。2.接下来假设n=x时,公式正确,即1+4+9+...+x^2=x(x+1)(...
怎么证明1^2+2^2+3^2+……+n^2的求和公式?
n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)n^3-1=3*(1^2+2^...
1^2+2^2+3^2+...+n^2=?
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)\/6。解题过程如下:解:因为(n+1)^3=n^3+3n^2+3n+1 则(n+1)^3-n^3=3n^2+3n+1 n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 ...3^3-2^3=3*2^3+3*2+1 2^3-1^3=3*1^3+3*1+1 把等式两边同时求和得,(n+...
1^2+2^2+3^2+...+n^2的答案及解题过程
因为:(n+1)^3=n^3+3n^2+3n+1,所以(n+1)^3-n^3=3n^2+3n+1,n^3-(n-1)^3=3(n-1)^2+3(n-1)+1...3^3-2^3=3*(2^2)+3*2+12^3-1^3=3*(1^2)+3*1+1把这n个等式两端分别相加,得(n+1)^3-1=3(1^2+2^2+3^2+...+n^2)+3(1+2+3+...+n)+n...
1^2+2^2+3^2+………+n^2怎么算
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)\/6。解题过程如下:解:因为(n+1)^3=n^3+3n^2+3n+1 则(n+1)^3-n^3=3n^2+3n+1 n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 ...3^3-2^3=3*2^3+3*2+1 2^3-1^3=3*1^3+3*1+1 把等式两边同时求和得,(n+...