用数学归纳法证明:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n

如题所述

证明:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n (n>=2,n属于N*)
1)1+1/2^2=5/4 < 3/2
2) 设:1+1/2^2+1/3^2+...+1/k^2<(2k-1)/k,
1+1/2^2+1/3^2+...+1/k^2+1/(k+1)^2<(2k-1)/k+1/(k+1)^2
=(2k^3+4k^2+2k-k^2-2k-1+k)/k(k+1)^2
=2-(k-1)/k(k+1)<[2(k+1)-1]/(k+1)
也就是如果n=k时成立能推出n=k+1也成立
所以,1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-07-08
应该有说明n≥2吧?
证明:
①n=2时,1/1^2+1/2^2=5/4 < (2×2-1)/2=3/2 成立;
②假设n=k(k≥2)时,1+1/2^2+1/3^2+...+1/k^2<(2k-1)/k 成立;
则:n=k+1时,
1+1/2^2+1/3^2+...+1/k^2+1/(k+1)^2
<(2k-1)/k + 1/(k+1)^2
=(2k-1)(k+1) / [k(k+1)] + 1/(k+1)^2
<(2k-1)(k+1) / [k(k+1)] + 1 / [k(k+1)]
=[(2k-1)(k+1)+1]/ [k(k+1)]
=k(2k+1) / [k(k+1)]
=(2k+1) / (k+1)
=[2(k+1)-1 ] / (k+1) 成立 ;
∴综上:1+1/2^2+1/3^2+...+1/n^2<(2n-1)/n (n≥2)
第2个回答  2013-07-08
不是小于等于号吗?因为当n=1时它不成立啊!

用数学归纳法证明:1+1\/2^2+1\/3^2+...+1\/n^2<(2n-1)\/n
证明:1+1\/2^2+1\/3^2+...+1\/n^2<(2n-1)\/n (n>=2,n属于N*)1)1+1\/2^2=5\/4 < 3\/2 2) 设:1+1\/2^2+1\/3^2+...+1\/k^2<(2k-1)\/k,1+1\/2^2+1\/3^2+...+1\/k^2+1\/(k+1)^2<(2k-1)\/k+1\/(k+1)^2 =(2k^3+4k^2+2k-k^2-2k-1+k)\/k(k+1...

证明1+1\/2^2+1\/3^2+...+1\/n^2<(2n-1)\/n
证明:1+1\/2^2+1\/3^2+...+1\/n^2<(2n-1)\/n (n>=2,n属于N*)1)1+1\/2^2=5\/4 < 3\/2 2) 设:1+1\/2^2+1\/3^2+...+1\/k^2<(2k-1)\/k,1+1\/2^2+1\/3^2+...+1\/k^2+1\/(k+1)^2<(2k-1)\/k+1\/(k+1)^2 =(2k^3+4k^2+2k-k^2-2k-1+k)\/k(k+1...

用数学归纳法证明1+1\/2²+1\/3²+...+1\/n²<2-1\/n n≥2
1.当n=2时,1+1\/4<2-1\/2,命题成立;2.假设n=k时,1+1\/2^2+1\/3^2+...+1\/k^2<2-1\/k,(k属于自然数集且n大于等于2),那么n=k+1时,1+1\/2^2+1\/3^2+...+1\/k^2+1\/(k+1)^2<2-1\/k+1\/(k+1)^2=2-(k^2+k+1)\/k(k+1)^2<2-(k^2+k)\/k(k+1)^2=...

1+1\/(2^2)+1\/(3^2)+1\/(4^2)+…+1\/(n^2)<1-1\/n 用数学归纳法证明
2.假设当n=k时,1\/2^2+1\/3^2+...+1\/k^2<1-1\/k 所以:当n=k+1时,左边=1\/2^2+1\/3^2+...+1\/k^2+1\/(k+1)^2 <1-1\/k+1\/(k+1)^2 =[1-1\/(k+1)]+[1\/(k+1)-1\/k+1\/(k+1)^2]=[1-1\/(k+1)]+(k^2+k-k^2-2k-1+k)\/k(k+1)^2 =[1-1\/(k...

用数学归纳法证明1+1\/2^2+1\/3^2+```+1\/n^2<2-1\/n
证明 n=2时,左边=1+1\/2^2=1+1\/4 右边=2-1\/2=1+1\/2 左边<右边 假设n=k时左边<右边成立 即1+1\/2^2+1\/3^2+...+1\/k^2<2-1\/k n=k+1时 左边 =1+1\/2^2+1\/3^2+...+1\/k^2+1\/(k+1)^2 <2-1\/k+1\/(k+1)^2 =2-(k^2+k+1)\/[k(k+1)^2]∵k^2+k+...

用数学归纳法证明:1+1\/2+1\/3+…+1\/(2^n-1)<n,(n是自然数且大于一)时...
当n=k时,1+1\/2+1\/3+…+1\/[2^(k-1)]<k,当n=k+1时,左边=1+1\/2+1\/3+…+1\/[2^(k-1)]+1\/[2^(k-1)+1]+1\/[2^(k-1)+2]+...+1\/[2^k].所以,左边增加的项共有2^k-2^(k-1)=2^(k-1)项。

用数学归纳法证明1+1\/2+1\/3+……+1\/(2^n-1)<n(n>1)时,由n=k不等式成立...
用数学归纳法证明1+1\/2+1\/3+……+1\/(2^n-1)<n(n>1)时,由n=k不等式成立,推证n=k+1时,左边应增加的项数:一项。该项为:1\/2^k.

...能不能用数学归纳法证明: 1+1\/2^2+1\/3^2+1\/4^2+…+1\/n^2<2_百度...
比如可先证n=1时成立,再用数学归纳法证明当n>1时,1+1\/2^2+1\/3^2+1\/4^2+…+1\/n^2<2-1\/n。这类题一般用放缩法较好:当n>1时,1\/n^2<1\/[n(n-1)]= 1\/(n-1) -1\/n。所以,当n>1时,1+1\/2^2+1\/3^2+1\/4^2+…+1\/n^2<1+(1-1\/2)+(1\/2-1\/3)+…+[1...

用数学归纳法证明:1+1\/2+1\/3+1\/4+...+1\/(2^n-1)≤n
证明:(1)当n=1时,1\/(2^1-1)≤1 成立;(2)当n=2时,1+1\/2+1\/3≤2,也成立;假设n=k时,不等式成立,即:1+1\/2+1\/3+1\/4+...+1\/(2^k-1)≤k 则n=k+1时,1+1\/2+1\/3+1\/4+...+1\/[2^(k+1)-1]=1+1\/2+1\/3+1\/4+...+1\/[2*2^k-1]={1+1\/2+...

用数学归纳法证明:1+1\/2+1\/3+……+1\/2^n>(n+2)\/2 (n>=2,正整数)_百度...
证明:(1)当n=2时,左边=1 + 1\/2 + 1\/3 + 1\/4 = 25\/12 右边= (2+2)\/2 = 2 = 24\/12 所以左边>右边成立,即n=2时命题成立。(2)假设当n=k (k>=2时)命题成立,即1+1\/2+1\/3+...+1\/2^k > (k+2)\/2 则当n=k+1时,左边 = 1+1\/2+1\/3+...+1\/2^k + 1\/...

相似回答