已知函数f(x)=sin^2x+2倍根号下3sinxcosx+3cos^2x.求函数的单调递增区间...
f(x)=sin^2x+2√3sinxcosx+3cos^2x =(sinx+√3cosx)^2 =[sin(π\/6+x)]^2 2kπ
已知函数f(x)=sin^2x+2sinxcosx+3cos^2x
f(x)=sin^2x+2sinxcosx+3cos^2x =1+sin2x+2cos²x =2+sin2x+cos2x =2+√2sin(2x+π\/4)所以f(x)周期为Kπ (2)先纵向拉长√2个单位,得到f(x)=√2sinx 接着向上平移2个单位,得到f(x)=√2sinx+2 接着横坐标横向缩短一半,得到f(x)=2+√2sin(=2x 最后向左平...
已知函数f(x)=sin^2x+2sinxcosx+3cos^2x,x属于R
=(2cos^2x-1)+2sinxcosx+2 =cos2x+sin2x+2 =v2sin(2x+π\/4)+2,——》f(x)最大=v2+2,此时,sin(2x+π\/4)=1——》2x+π\/4=2kπ+π\/2——》x=kπ+π\/8,k∈Z,正弦函数的周期是2kπ,即(2x+π\/4)整体的周期是2kπ,所以,针对自变量x的最小正周期为π,在计算正...
求函数f(x)=Sin^2x+2SinCosx+3Cos^2x的值域?
=(sin^2 x+cos^2 x)+2sinxcosx+2cos^2 x =1+sin2x+1+cos2x = √2 sin(2x+ π\/4 )+2 所以f(x)的值域是[2-√2,2+√2],1,
已知函数f(x)=sin^2 x +2√3sinxcosx+3cos^2 x+m
f(x)=sin^2x+2√3sinxcosx+3cos^2x+m =(cos2x+√3sin2x)+m+2 =2[sin(π\/6+2x)]+m+2 单调区域间 2kπ-π\/2 <π\/6+2x<2kπ+π\/2 , kπ-5π\/12 <x<kπ+π\/6 (2)当x∈[0,π\/3]时,π\/6+2x∈[π\/6,5π\/6]当π\/6+2x=π\/2 f(x)最大=2+m+2=9 m=5...
已知f(x)=sin²x+2sinxcosx+3cos²x,x∈R,求:函数f(x)的对称轴...
解f(x)=sin^2x+2sinxcosx+3cos^2x,=sin^2x+cos^2x+2sinxcosx+2cos^2x =1+sin2x+2cos^2x =2+sin2x+2cos^2x-1 =sin2x+cos2x+2 =√2sin(2x+π\/4)+2 函数的对称轴满足2x+π\/4=kπ+π\/2,k属于Z.故函数的对称轴为x=kπ\/2+π\/8,k属于Z.函数图像的对称中心满足2x+π\/4=...
已知函数f(x)=sin²x+2根号3sinxcosx+3cos²x
f(x)=sinx^2+2√3sinxcosx+3cosx^2 =sinx^2+cosx^2+2√3sinxcosx+2cosx^2 =2√3sinxcosx+2cosx^2-1+2 =√3sin2x+cos2x+2 =2(√3\/2sin2x+1\/2cos2x)+2 =2sin(2x+π\/6)+2 剩下就简单了
已知函数f(x)=sin^2x+2sinxcosx-3cos^2x 求函数的最小正周期和最大值...
解f(x)=sin^2x+2sinxcosx-3cos^2x =sin^2x+cos^2x +2sinxcosx-4cos^2x =1+2sinxcosx-4cos^2x =1+sin2x-4cos^2x =1+sin2x-2*(2cos^2x-1)-2 = 1+sin2x-2*(cos2x)-2 =sin2x-2cos2x-1 =√5(1\/√5sin2x-2\/√5cos2x)-1 =√5sin(2x-θ)-1 即函数的最小正周期...
已知函数f(x)=sin^2x+2sinxcosx+3cos^x
f(x)=sin²x+2sinxcosx+3cos²x =sin2x +2cos²x +1 =sin2x+cos2x +2 =√2[(√2\/2)sin2x+(√2\/2)cos2x] +2 =√2sin(2x+π\/4) +2 (1)令 -π\/2+2kπ≤2x+π\/4≤π\/2+2kπ 解得 -3π\/8+kπ≤x≤π\/8+kπ 从而 增区间为[-3π\/8+kπ,...
已知函数f(x)=sin^2x+2sinxcosx+cos^2x
f(x)=sin^2x+2sinxcosx+cos^2x=sin2x+1,最小值周期2π\/2=π,-1≤sin2x≤1,f(x)最大值2,最小值,0,[kπ-π\/4,kπ+π\/4]是递增[kπ+π\/4,kπ+3\/4π]递减