已知函数f(x)=sin^2x+2sinxcosx+3cos^x
f(x)=sin²x+2sinxcosx+3cos²x =sin2x +2cos²x +1 =sin2x+cos2x +2 =√2[(√2\/2)sin2x+(√2\/2)cos2x] +2 =√2sin(2x+π\/4) +2 (1)令 -π\/2+2kπ≤2x+π\/4≤π\/2+2kπ 解得 -3π\/8+kπ≤x≤π\/8+kπ 从而 增区间为[-3π\/8+kπ,...
已知函数f(x)=sin^2x+2sinxcosx+3cos^2x,x属于R
=(2cos^2x-1)+2sinxcosx+2 =cos2x+sin2x+2 =v2sin(2x+π\/4)+2,——》f(x)最大=v2+2,此时,sin(2x+π\/4)=1——》2x+π\/4=2kπ+π\/2——》x=kπ+π\/8,k∈Z,正弦函数的周期是2kπ,即(2x+π\/4)整体的周期是2kπ,所以,针对自变量x的最小正周期为π,在计算正...
已知函数f(x)=sin^2x+2sinxcosx+3cos^2x
f(x)=sin^2x+2sinxcosx+3cos^2x =1+sin2x+2cos²x =2+sin2x+cos2x =2+√2sin(2x+π\/4)所以f(x)周期为Kπ (2)先纵向拉长√2个单位,得到f(x)=√2sinx 接着向上平移2个单位,得到f(x)=√2sinx+2 接着横坐标横向缩短一半,得到f(x)=2+√2sin(=2x 最后向左平...
已知函数f(x)=sin^x+2sinxcosx+3cos^x,x属于R,求1:函数f(x)最大值...
1.f(x)=(sinx)^2+2sinxcosx+3(cosx)^2 =1+sin2x+2(cosx)^2 =sin2x+cos2x+2 =√2sin(2x+π\/4)+2 所以f(x)的最大值是2+√2 当2x+π\/4=2kπ+π\/2(k∈Z),即x=kπ+π\/8(k∈Z)时f(x)取的最大值 所以取得最大值时的自变量x的集合是{x|x=kπ+π\/8(k∈Z)} 2....
已知f(x)=sin²x+2sinxcosx+3cos²x,x∈R,求:函数f(x)的对称轴...
解f(x)=sin^2x+2sinxcosx+3cos^2x,=sin^2x+cos^2x+2sinxcosx+2cos^2x =1+sin2x+2cos^2x =2+sin2x+2cos^2x-1 =sin2x+cos2x+2 =√2sin(2x+π\/4)+2 函数的对称轴满足2x+π\/4=kπ+π\/2,k属于Z。故函数的对称轴为x=kπ\/2+π\/8,k属于Z。函数图像的对称中心满足2x+π\/...
已知f(x)=sin^2x+2sinxcosx+3cos^2x x属于(0,π)求
f(x)=sin^2x+2sinxcosx+3cos^2x=(1—cos2x)\/2+sin2x+3\/2(1+cos2x)=cos2x+sin2x+2 =根号2sin(2x+π\/4)+2 (1)x属于(0,π),2x+π\/4属于(π\/4,9π\/4), f(x)最大值是根号2+2,2x+π\/4=π\/2时,即x=π\/8时,此函数有最大值 (2)π\/4<2x+π\/4≤π\/2或...
已知函数f(x)=sin^2x+2倍根号下3sinxcosx+3cos^2x.求函数的单调递增区间...
f(x)=sin^2x+2√3sinxcosx+3cos^2x =(sinx+√3cosx)^2 =[sin(π\/6+x)]^2 2kπ
...已知函数f(x)等于sin平方x加2sinxcosx加3cos平方x。x属于R。求(1...
希望能够解决你的问题!
已知函数f(x)=sin^2x+2sinxcosx+cos^2x
f(x)=sin^2x+2sinxcosx+cos^2x=sin2x+1,最小值周期2π\/2=π,-1≤sin2x≤1,f(x)最大值2,最小值,0,[kπ-π\/4,kπ+π\/4]是递增[kπ+π\/4,kπ+3\/4π]递减
已知函数f(x)=sin^2x+2sinxcosx-3cos^2x 求函数的最小正周期和最大值...
解f(x)=sin^2x+2sinxcosx-3cos^2x =sin^2x+cos^2x +2sinxcosx-4cos^2x =1+2sinxcosx-4cos^2x =1+sin2x-4cos^2x =1+sin2x-2*(2cos^2x-1)-2 = 1+sin2x-2*(cos2x)-2 =sin2x-2cos2x-1 =√5(1\/√5sin2x-2\/√5cos2x)-1 =√5sin(2x-θ)-1 即函数的最小正周期...