我觉得也是等比数列,偏偏老师发的卷子,写着等差数列
已知等差数列(an)中,a1=2,an+1=1\/2an,求(1)数列(an)的通项公式.求(2...
(1)a(n+1)=1\/2an ∴﹛an﹜是等比数列 ∴an=a1q^(n-1)=2×1\/2^(n-1)(2)Sn=2×(1-1\/2^n)\/(1-1\/2)=4(1-1\/2^n)∴S5=4×(1-1\/2^5)=4-1\/8=31\/8 明教为您解答,如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!希望还您一个正确答复!祝您学...
已知等差数列{an}中a2=2,a1+a4=5 (1)求数列{an}的通项公式 (2)若bn=...
a2=a1+d=2 (1)a1+a4=a1+a1+3d=5 (2)由(1)与(2)解得:a1=1,d=1 ∴an=a1+(n-1)d=1+(n-1)=n 即:an=n (2)∵bn=2nan=2n*n=2n^2 ∴Sn=2*(1^2+2^2+...+n^2)=2*n(n+1)(2n+1)\/6=n(n+1)(2n+1)\/3 (这里用到了公式1^2+2^2+...+...
已知数列{An}满足A1=2,A(n+1)=2An\/(2+An).(1)求此数列的前三项,(2...
∴1\/a(n+1)=(an+2)\/2an 1\/a(n+1)=1\/2+1\/an 1\/a(n+1)-1\/an=1\/2 ∴{1\/an}为等差数列,首项1\/a1=1\/2 ,公差d=1\/2 ∴1\/an=1\/a1+(n-1)·d=n\/2 ∴an=2\/n
已知{an}是等比数列,其中a1=2,且a2,a3+1,a4成等差数列。求:1.{an}...
1、设{an}的公比为q。因为a2、a3+1、a4成等差数列,a1=2,所以a1q+a1q^3=2(a1q^2+1),代入数据化简得:q^3-2q^2+q-1=0。下面问题转化为解这个一元三次方程,分以下步骤进行:(1)做变换q=x+2\/3,代入式中消去q^2项,化简有x^3+x\/3-25\/27=0。(2)令x=u+v,则x^3=(u...
已知数列{An}中,已知a1=2,an+1=2an∕an+1,求证,数列{1∕an-1}是等差...
= 1 + 2\/(an-1)1\/[a(n+1)-1] +1 = 2( 1\/(an -1) + 1 )[1\/[a(n+1)-1] +1]\/( 1\/(an -1) + 1 ) =2 ( 1\/(an -1) + 1 )\/( 1\/(a1 -1) + 1 ) =2^(n-1)1\/(an -1) + 1 = 2^n an -1 =1\/( -1+2^n)an = 1+1\/( -1+2^n)
已知{an}为等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式(2...
d=a2-a1=2 an=2n (2)bn=2n·3^n Sn=2·3+4·3^2+6·3^3...+2n·3^n 3Sn= 2·3^2+4·3^3+6·3^4...-2n·3^n+1 -2Sn=2·3+2·3^2+2·3^3+...2·3^n-2n·3^n+1 -Sn=3+3^2+3^3+...3^n-n·3^n+1 -Sn=[3(1-3^n)\/(1-3)]-n·3^n+...
已知等差数列{AN}中,A1=-2,A2=1,(1)求数列{AN}的通项公式;(2)调整数列...
(1)∵A1=-2,A2=1 ∴公差D=A2-A1=3 AN=A1+(N-1)D=-2+3(N-1)=3N-5 (2)A1=-2,A2=1,A3=4 令B1=A2=1,B2=A1=-2,B3=A3=4,此时{BN}是等比数列,公比Q=-2 SN=B1(1-Q^N)\/(1-Q)=[1-(-2)^N]\/3
已知等差数列{an}中,a1=1,a3=5.(1)求数列{an}的通项公式; (2)若bn=...
(1)在等差数列{an}中,∵a1=1,a3=5,∴公差d=a3?a13?1=5?12=2,∴an=1+2(n-1)=2n-1;(2)bn=2 an=22n-1,∴数列{bn}的前5项和S5=b1+b2+…+b5=21+23+25+27+29=2(1?45)1?4=682.
已知数列{an},a1=1,an+1=3an\/2an+3,(1)求数列{an}的前五项)(2)数列{...
a3=3a2\/(2a2+3)=3\/7 a4=3a3\/(2a3+3)=3\/9=1\/3 a5=3a4\/(2a4+3)=3\/11 (2)a(n+1)=3an\/(2an+3)若a(n+1)=0,则an=0 a1=0与a1=1矛盾。因此,an≠0 两边同时取倒数得 1\/a(n+1)=(2an+3)\/3an = 1\/an + 2\/3 {1\/an是首项为为1\/a1=1,公差为2\/3的等差数列...
...\/an+2(n∈N*) 求a2,a3,a4,a5 猜想数列(an)的通项公
也成立,所以an=2\/(n+1)或者也可以直接求出an a(n+1)=2an\/an+2,两边乘以an+2 a(n+1)an+2a(n+1)=2an,两边除以a(n+1)*an 1+2\/an=2\/a(n+1),即2\/a(n+1)-2\/an=1为常数,2\/an是等差数列,公差为1,首项为2\/a1=2 2\/an=2\/a1+n-1=n+1 an=2\/(n+1)...