理发师悖论(通俗)

有个理发师说,我只为不给自己理发的人理发。问他应该给自己理发吗?

理发师悖论

在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。

可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。

理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。

那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。

“理发师悖论”是很容易解决的,解决的办法之一就是修正理发师的规矩,将他自己排除在规矩之外;可是严格的罗素悖论就不是这么容易解决的了。

扩展资料:

理发师悖论是罗素悖论的通俗举例,是由伯特兰·罗素在1901年提出的。罗素悖论的出现是由于朴素集合论对于元素的不加限制的定义。

由于当时集合论已成为数学理论的基础,这一悖论的出现直接导致了第三次数学危机,也引发了众多的数学家对这一问题的补救,最终形成了现在的公理化集合论。同时,罗素悖论的出现促使数学家认识到将数学基础公理化的必要性。

罗素悖论:设集合S是由一切不属于自身的集合所组成,即“S={x|x ∉ S}”。

所谓罗素悖论指的是由罗素发现的一个集合论悖论。设集合S是由一切不属于自身的集合所组成,即“S={x|x ∉ S}”。那么问题是:S包含于S是否成立?首先,若S包含于S,则不符合x∉S,则S不包含于S;其次,若S不包含于S,则符合x∉S,S包含于S。

参考资料:百度百科-理发师悖论

温馨提示:内容为网友见解,仅供参考
第1个回答  2015-09-09
理发师悖论:
某理发师发誓“要给所有不自已理发的人理发,不给所有自己理发的人理发”,现在的问题是“谁为该理发师理发?”。首先,若理发师给自己理发,那他就是一个“自己理发的人”,依其誓言“他不给自己理发”;其次,若“他不给自己理发”,依其誓言,他就必须“给自己理发”
这是罗素悖论通俗的描述
【罗素悖论定义】

集合可以分为两类:第一类集合的特征是:集合本身又是集合中的元素,例如当时人们经常说的“所有集合所成的集合”;第二类集合的特征是:集合本身不是集合的元素,例如直线上点的集合。显然,一个集合必须是并且只能是这两类集合中的一类。现在假定R是所有第二类集合所成的集合。那么,R是哪一类的集合呢?

如果R是第一类的,R是自己的元素,但由定义,R只由第二类集合组成,于是R又是第二类集合;如果R是第二类集合,那么,由R的定义,R必须是R的元素,从而R又是第一类集合。总之,左右为难,无法给出回答。这就是著名的“罗素悖论”。
第2个回答  2013-08-24
理发师悖论 由著名数学家伯特兰·罗素(Bertrand A.W. Russell,1872—1970)提出的悖论与之相似: 在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。 理发师悖论与罗素悖论等价 理发师悖论与罗素悖论是等价的: 因为,如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。本回答被网友采纳
第3个回答  2019-07-29
难道没人发现,这个悖论其实是语言问题吗。只给不给自己理发的人理发,这句话,分为两个定义,四个集合。给自己理发和不给自己理发的人,是一个定义两个集合A和B。给别人理发和不给别人理发,是另一个定义两个集合C和D。问的却是,A或B中的元素属不属于C或D!
第4个回答  2019-09-08
这个问题其实可以用朴素简单的眼光去看待。'我只为不给自己理发的人理发'。首先这句话就具有欺骗意义。理发师不是'只为不给自己理发的人理发'。而是他只能够'为不给自己理发的人理发'。因为一旦有人能够为自己理发,理发师就无法为这个人理发了(即便理发师想理也理不了)。其次。并不是所有'不给自己理发的人'都得到他这里去理发。所以从这里就可以看出有一个优先级的概念。'给自己理发的人'优先级要大于符合'理发师'理发条件的人。也就是说一旦有人给自己理发,无论是谁,其优先级都要优先于理发师的理发条件。即使是理发师本人。也可以用一个判断来表示这里的优先级关系:自己给不给自己理发?给(则理发师无权理发——即直接无视理发师的理发规则)。不给(则理发师才有可能得到理发机会)。由于'自己给自己理发'的优先级大于理发师的理发条件,所以理发师给自己理发是合理的。

理发师悖论(通俗)
“理发师悖论”是很容易解决的,解决的办法之一就是修正理发师的规矩,将他自己排除在规矩之外;可是严格的罗素悖论就不是这么容易解决的了。

用一句话概括数学经典故事---罗素悖论的故事
罗素悖论又称“理发师悖论”罗素悖论:设性质P(x)表示“x不属于x”,现假设由性质P确定了一个类A——也就是说“A=\\{x|x不属于x\\}”。那么问题是:A属于A是否成立?首先,若A属于A,则A是A的元素,那么A具有性质P,由性质P知A不属于A;其次,若A不属于 A,也就是说A具有性质P,而A是...

什么是理发师悖论
理发师悖论是罗素悖论的通俗举例,是由伯特兰·罗素在1901年提出的。罗素悖论的出现是由于朴素集合论对于元素的不加限制的定义。由于当时集合论已成为数学理论的基础,这一悖论的出现直接导致了第三次数学危机,也引发了众多的数学家对这一问题的补救,最终形成了现在的公理化集合论。同时,罗素悖论的出现促...

谁能说明一下生活中的悖论问题,最好是有具体的例子。
理发师悖论(剃头匠悖论)——罗素悖论的通俗形式。村子里的理发师坚持这样的原则:他只给那些不给自己理发的人理发。问题是,他是否要给自己理发?如果他给自己理发,那么他就不属于“那些不给自己理发的人”,所以他不能给自己理;如果他不给自己理发,他就属于“那些不给自己理发的人”,因而他要给...

有一个理发师他只给不给自己理发的人理发,问他给自己理发吗
伯特纳德·罗素提出这个悖论,为的是把他发现的关于集合的一个著名悖论用故事通俗地表述出来。某些集合看起来是它自己的元素。例如,所有不是苹果的东西的集合、它本身就不是苹果,所以它必然是此集合自身的元素。现在来考虑一个由一切不是它本身的元案的集合组成的集合。这个集合是它本身的元素吗?无论...

集合论悖论的提出
1919年罗素给出了上述悖论的通俗形式,即“理发师悖论”:一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。因为,如果他给自己理发,那么他就属于自己给自己理发的那类人。但是,招牌...

罗素悖论,理发师悖论和异己词悖论的关系
首先,若理发师给自己理发,那他就是一个“自己理发的人”,依其誓言“他不给自己理发”;其次,若“他不给自己理发”,依其誓言,他就必须“给自己理发” 这是罗素悖论通俗的描述 【罗素悖论定义】 集合可以分为两类:第一类集合的特征是:集合本身又是集合中的元素,例如当时人们经常说的“所有...

罗素的理发师悖论如何理解,速求答案啊,HELP HELP HELP ,快考试了...
答案:这个城市不可能存在。因为 (1)如果理发师不替自己理发,他需要遵守规则,给自己理发;(2)如果理发师替自己理发,如遵守规则,他不能替自己理发。(这个悖论的出现是由于“怀素合论”对于元素的不加限制的定义。当时的集合论被称为数学理论的基础,这悖论的出现直接导致了第三次数学危机,引发...

罗素悖论的通俗版又被称为( ).
罗素悖论的通俗版又被称为理发师悖论。罗素悖论:设性质P(x)表示“x不属于x”,现假设由性质P确定了一个类A--也就是说“A={x|x∉A}”。那么问题是:A属于A是否成立?首先,若A属于A,则A是A的元素,那么A具有性质P,由性质P知A不属于A;其次,若A不属于A,也就是说A具有性质P...

罗素悖论是怎么回事?有多少个版本?
问,Q∈(包含于的意思)P 还是 Q∈Q?这就是著名的“罗素悖论”。罗素悖论还有一个通俗的版本,就是理发师悖论.理发师悖论大意:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示...

相似回答