已知数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)(an)/2 +1(n∈正整数)(1)求数列{an}的通项公式an

如题所述

a1+2a2+3a3+...+nan=(n+1)(an)/2 (1)
a1+2a2+3a3+...+nan+ (n+1)a(n+1)=(n+2)a(n+1)/2 (2)
(2)-(1)
(n+1)a(n+1) = (1/2)[ (n+2)a(n+1) -(n+1)an ]
na(n+1) = -(n+1)an
a(n+1)/an = - (n+1)n
an/a(n-1) = - n/(n-1)
an/a1 = (-1)^(n-1) . n
an=(-1)^(n-1) . n追问

(1)求数列{an}的通项公式an
(2)求数列{n²an}的前n项和Tn
(3)若存在n∈正整数,使得an≤(n+1)x,求实数x的最小值

温馨提示:内容为网友见解,仅供参考
无其他回答

已知数列{an}中,a1=1,a1+2a2+3a3+……+nan=(n+1)\/2*an+1 求数列{an}...
这题答案是 a(1)=a(2)=1,a(n)=2\/n*3^(n-2)我简要地说一下 对于题目的等式,变量分别取n和n-1得两个式子,相减化简得到a(n)\/a(n-1)=(n-2)\/(n-1).注意到a(1)=a(2)=1,a(3)=2,a(3)\/a(2)是满足此条件的起始项,然后累乘就得到想要的答案,注意项数 ...

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)\/2)a(n+1)(n∈N*)
由a1 = 1,a1 + 2a2 + 3a3 + ... + nan = ((n + 1) \/ 2)a(n + 1) (*)(*)式取n = 1 得 a2 = 1 当k ≥ 3时 [(*)式取n = k] - [(*)式取n = k - 1] 并将k替换为n 得 nan = [(n + 1)a(n + 1) - nan] \/ 2 整理得 a(n + 1) \/ an = ...

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n+1)\/2an+1(n∈N*)
an=3^(n-1)\/n n=1时,a1=1\/1=1,同样满足通项公式 数列{an}的通项公式为an=3^(n-1)\/n 2.n^2·an=n^2·[3^(n-1)\/n]=n·3^(n-1)Tn=1×1+2×3+3×3²+...+n×3^(n-1)3Tn=1×3+2×3²+...+(n-1)×3^(n-1)+n×3ⁿTn-3Tn=-2Tn...

已知数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)\/2a(n+1)(n∈正整数)
解:(1)因为a1+2a2+3a3+…+nan=n+1 2 an+1(n∈N*)所以a1+2a2+3a3+…+(n-1)an-1=n 2 an(n≥2)---(1分)两式相减得nan=n+1 2 an+1-n 2 an 所以(n+1)an+1 nan =3(n≥2)---(2分)因此数列{nan}从第二项起,是以2为首项,以3为公比的等比数列 所以nan...

在数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)(an+1)\/2,求{an}的通项
令n=1得:a1=2a2\/2, a2=1.当n≥2时,a1+2a2+3a3+...+(n-1)a(n-1)=na(n)\/2,两式相减得:nan=(n+1)(a(n+1))\/2 -na(n)\/2,3na(n)\/2=(n+1)(a(n+1))\/2,a(n+1) \/a(n)= 3n\/(n+1)( n≥2),所以a3\/a2=3•2\/3,a4\/a3=3•3\/4,a5\/a4=3...

已知数列{an} a1=1 a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)(n属于N*...
解:a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1) ① a1+2a2+3a3+………+(n-1)a(n-1)=n\/2*an ② 由①-②得nan=(n+1)\/2 * a(n+1) -n\/2 *an n\/2 *an=(n+1)\/2 *a(n+1)a(n+1)\/an=n\/(n+1)所以an=a1×a2\/a1×a3\/a2×…an\/a(n-1)=1×1\/2...

在数列{an}中,a1=1, a1+2a2+3a3+...+nan=n+1\/2 an+1 (n∈N)
a1=1, a1+2a2+3a3+...+nan=(n+1)an+1\/2,a1+2a2+3a3+...+(n-1)an-1=(n)an\/2,相减得an+1\/an=n\/(n+1),an\/an-1=(n-1)\/n,累乘得an=(n-1\/n)x(n-2\/n-1)...1\/2a1=1\/n,即an=1\/n.an≤(n+1)λ,1\/n<=(n+1)λ,λ>=1\/n(n+1),1\/n(n+1)当n=1...

已知数列an中,a1=1,a1+2a2+3a3+…+nan=(n+1)\/2*an+1
x`y表示x的y次方 设上面这条式子等于An An-An-1=nan=n\/2*an-1 an*an-1=1\/2 a1=a3=...=a2n-1=1 a2=a4=...=a2n=1\/2 (n为正整数)

已知数列{an}a1=1a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)(n属于N*...
a1+2a2+3a3+………+(n-1)a(n-1)=n\/2*an② 由①-②得nan=(n+1)\/2*a(n+1)-n\/2*an n\/2*an=(n+1)\/2*a(n+1)a(n+1)\/an=n\/(n+1)所以an=a1×a2\/a1×a3\/a2×…an\/a(n-1)=1×1\/2×2\/3×…(n-1)\/n =1\/n (2)n^2an=n²×1\/n=n 所以Tn=1...

已知数列{an}满足:1+a1+2a2+3a3+…+nan=2n,n∈N*.(Ⅰ)求数列{an}的通...
+nan=2n①,∴n≥2时,a1+2a2+3a3+…+(n-1)an-1=2n-1②①-②得nan=2n-2n-1=2n-1,an=2n?1n(n≥2),在①中令n=1得a1=1,也适合上式.所以an=2n?1n(n≥1)(Ⅱ)由(Ⅰ),bn=2nan=2n,利用两角差的正切公式变形,tanbn?tanbn+1=tanbn+1?tanbntan(bn+1?bn)-1...

相似回答