已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n+1)\/2an+1(n∈N*)
nan=[(n+1)\/2]a(n+1)-(n\/2)an (n+1)a(n+1)=3nan [(n+1)a(n+1)]\/(nan)=3,为定值 a1×1=1×1=1,数列{nan}是以1为首项,3为公比的等比数列 nan=1×3^(n-1)=3^(n-1)an=3^(n-1)\/n n=1时,a1=1\/1=1,同样满足通项公式 数列{an}的通项公式为an=3^(n...
在数列{an}中,a1=1, a1+2a2+3a3+...+nan=n+1\/2 an+1 (n∈N)
a1=1, a1+2a2+3a3+...+nan=(n+1)an+1\/2,a1+2a2+3a3+...+(n-1)an-1=(n)an\/2,相减得an+1\/an=n\/(n+1),an\/an-1=(n-1)\/n,累乘得an=(n-1\/n)x(n-2\/n-1)...1\/2a1=1\/n,即an=1\/n.an≤(n+1)λ,1\/n<=(n+1)λ,λ>=1\/n(n+1),1\/n(n+1)当n=1...
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)\/2)a(n+1)(n∈N*)
由a1 = 1,a1 + 2a2 + 3a3 + ... + nan = ((n + 1) \/ 2)a(n + 1) (*)(*)式取n = 1 得 a2 = 1 当k ≥ 3时 [(*)式取n = k] - [(*)式取n = k - 1] 并将k替换为n 得 nan = [(n + 1)a(n + 1) - nan] \/ 2 整理得 a(n + 1) \/ an = ...
已知数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)\/2a(n+1)(n∈正整数)
解:(1)因为a1+2a2+3a3+…+nan=n+1 2 an+1(n∈N*)所以a1+2a2+3a3+…+(n-1)an-1=n 2 an(n≥2)---(1分)两式相减得nan=n+1 2 an+1-n 2 an 所以(n+1)an+1 nan =3(n≥2)---(2分)因此数列{nan}从第二项起,是以2为首项,以3为公比的等比数列 所以nan=...
已知数列{an}中,a1=1,a1+2a2+3a3+……+nan=(n+1)\/2*an+1 求数列{an}...
其实是这样的:这题答案是 a(1)=a(2)=1,a(n)=2\/n*3^(n-2)我简要地说一下 对于题目的等式,变量分别取n和n-1得两个式子,相减化简得到a(n)\/a(n-1)=(n-2)\/(n-1).注意到a(1)=a(2)=1,a(3)=2,a(3)\/a(2)是满足此条件的起始项,然后累乘就得到想要的答案,注意项数 ...
已知数列{an} a1=1 a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)(n属于N*...
a1+2a2+3a3+………+(n-1)a(n-1)=n\/2*an ② 由①-②得nan=(n+1)\/2 * a(n+1) -n\/2 *an n\/2 *an=(n+1)\/2 *a(n+1)a(n+1)\/an=n\/(n+1)所以an=a1×a2\/a1×a3\/a2×…an\/a(n-1)=1×1\/2×2\/3×…(n-1)\/n =1\/n (2)n^2an=n²×1\/n=...
已知数列{an}a1=1a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)(n属于N*...
解:a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)① a1+2a2+3a3+………+(n-1)a(n-1)=n\/2*an② 由①-②得nan=(n+1)\/2*a(n+1)-n\/2*an n\/2*an=(n+1)\/2*a(n+1)a(n+1)\/an=n\/(n+1)所以an=a1×a2\/a1×a3\/a2×…an\/a(n-1)=1×1\/2×2\/3×…(n-1)...
数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+12an+1(n∈N*).证明数列{nan}(n...
证明:∵a1+2a2+3a3+…+nan=n+12an+1(n∈N*),∴a1+2a2+3a3+…+(n?1)an?1=n2an(n≥2),两式相减得nan=n+12an+1?n2an,∴(n+1)an+1nan=3(n≥2),因此,数列{nan}从第二项起,是以2为首项,以3为公比的等比数列.
已知数列an中,a1=1,a1+2a2+3a3+…+nan=(n+1)\/2*an+1
x`y表示x的y次方 设上面这条式子等于An An-An-1=nan=n\/2*an-1 an*an-1=1\/2 a1=a3=...=a2n-1=1 a2=a4=...=a2n=1\/2 (n为正整数)
在数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)(an+1)\/2,求{an}的通项
令n=1得:a1=2a2\/2, a2=1.当n≥2时,a1+2a2+3a3+...+(n-1)a(n-1)=na(n)\/2,两式相减得:nan=(n+1)(a(n+1))\/2 -na(n)\/2,3na(n)\/2=(n+1)(a(n+1))\/2,a(n+1) \/a(n)= 3n\/(n+1)( n≥2),所以a3\/a2=3•2\/3,a4\/a3=3•3\/4,a5\/a4=3...