已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n+1)/2an+1(n∈N*)

如题所述

1.
n≥2时,
a1+2a2+3a3+...+nan=[(n+1)/2]a(n+1) (1)
a1+2a2+3a3+...+(n-1)a(n-1)=(n/2)an (2)
(1)-(2)
nan=[(n+1)/2]a(n+1)-(n/2)an
(n+1)a(n+1)=3nan
[(n+1)a(n+1)]/(nan)=3,为定值
a1×1=1×1=1,数列{nan}是以1为首项,3为公比的等比数列
nan=1×3^(n-1)=3^(n-1)
an=3^(n-1)/n
n=1时,a1=1/1=1,同样满足通项公式
数列{an}的通项公式为an=3^(n-1)/n
2.
n^2·an=n^2·[3^(n-1)/n]=n·3^(n-1)
Tn=1×1+2×3+3×3²+...+n×3^(n-1)
3Tn=1×3+2×3²+...+(n-1)×3^(n-1)+n×3ⁿ
Tn-3Tn=-2Tn=1+3+...+3^(n-1)-n×3ⁿ
=1×(3ⁿ-1)/(3-1) -n×3ⁿ
=[(1-2n)×3ⁿ-1]/2
Tn=[(2n-1)×3ⁿ +1]/4
3.
[a(n+1)/(n+2)]/[an/(n+1)]

=[3ⁿ/(n+1)(n+2)]/[3^(n-1)/n(n+1)]
=3n/(n+2)
n≥1 n/(n+2)≤1/3,当且仅当n=1时取等号
3n/(n+2)≤1,当且仅当n=1时取等号
即对数列{an/(n+1)}, a1/2=a2/3,当n≥2时,{an/(n+1)}单调递减
a1/2=1/2
要不等式an≤(n+1)λ对任意正整数n恒成立,即an/(n+1)≤λ对任意正整数n恒成立,只需当an/(n+1)取最大值时不等式成立。
λ≥1/2,λ的最小值为1/2
温馨提示:内容为网友见解,仅供参考
第1个回答  2014-07-03
a(1)=1,
a(1)+2a(2)+...+na(n) = (n+1)a(n+1)/2, a(1) = 2a(2)/2, a(2)=1.
a(1)+2a(2)+...+na(n)+(n+1)a(n+1) = (n+2)a(n+2)/2 = (n+1)a(n+1)/2 + (n+1)a(n+1)=3(n+1)a(n+1)/2,

(n+2)a(n+2) = 3(n+1)a(n+1),
{(n+1)a(n+1)}是首项为2a(2)=2, 公比为3的等比数列。

(n+1)a(n+1) = 2*3^(n-1) = (2/9)3^(n+1)
a(n+1) = (2/9)3^(n+1)/(n+1),

{a(n)}的通项公式为:
a(1)=1,
n>=2时,a(n) = (2/9)3^n/n = (2*3^n)/(9n)

b(n) = n^2a(n),
b(1) = a(1)=1,
n>=2时,b(n)=(2n/9)*3^n = 2n*3^(n-2),

t(1)=b(1)=1,
n>=2时,
t(n) = b(1)+b(2)+b(3)+...+b(n-1)+b(n)
= 1 + 2*2*1 + 2*3*3 + ... + 2(n-1)*3^(n-3) + 2n*3^(n-2),
3t(n) = 3 + 2*2*3 + 2*3*3^2 + ... + 2(n-1)*3^(n-2) + 2n*3^(n-1),

2t(n) = 3t(n)- t(n) = 2 - 2*2 - 2*3 - ... - 2*3^(n-2) + 2n*3^(n-1)
= 2n*3^(n-1) - 2*1 - 2*3 - ... - 2*3^(n-2)
= 2n*3^(n-1) - 2[1+3+...+3^(n-2)]
= 2n*3^(n-1) - 2[3^(n-1)-1]/(3-1)
= 2n*3^(n-1) - 2[3^(n-1)-1]/2,

t(n) = n*3^(n-1) - [3^(n-1)-1]/2 = [(2n-1)*3^(n-1) + 1]/2.

t(1)=1,
n>=2时,t(n) = [(2n-1)*3^(n-1) + 1]/2.

c(n) = a(n)/(n+1),
c(1) = a(1)/2 = 1/2.
n>=2时,c(n) = (2/9)3^n/[n(n+1)] >0.
c(n+1) = (2/9)3^(n+1)/[(n+1)(n+2)],

c(n+1)/c(n) = 3n/(n+2) = (n+2-2+2n)/(n+2) = 1 + 2(n-1)/(n+2)>1.

n>=2时,c(n+1)>c(n), {c(n),n>=2}单调递增 。c(n)>=c(2)=(2/9)3^2/[2*3] = 1/3.
c(1)=1/2>1/3.
因此,Lamda 的最小值=1/3.

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n+1)\/2an+1(n∈N*)
nan=[(n+1)\/2]a(n+1)-(n\/2)an (n+1)a(n+1)=3nan [(n+1)a(n+1)]\/(nan)=3,为定值 a1×1=1×1=1,数列{nan}是以1为首项,3为公比的等比数列 nan=1×3^(n-1)=3^(n-1)an=3^(n-1)\/n n=1时,a1=1\/1=1,同样满足通项公式 数列{an}的通项公式为an=3^(n...

在数列{an}中,a1=1, a1+2a2+3a3+...+nan=n+1\/2 an+1 (n∈N)
a1=1, a1+2a2+3a3+...+nan=(n+1)an+1\/2,a1+2a2+3a3+...+(n-1)an-1=(n)an\/2,相减得an+1\/an=n\/(n+1),an\/an-1=(n-1)\/n,累乘得an=(n-1\/n)x(n-2\/n-1)...1\/2a1=1\/n,即an=1\/n.an≤(n+1)λ,1\/n<=(n+1)λ,λ>=1\/n(n+1),1\/n(n+1)当n=1...

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)\/2)a(n+1)(n∈N*)
由a1 = 1,a1 + 2a2 + 3a3 + ... + nan = ((n + 1) \/ 2)a(n + 1) (*)(*)式取n = 1 得 a2 = 1 当k ≥ 3时 [(*)式取n = k] - [(*)式取n = k - 1] 并将k替换为n 得 nan = [(n + 1)a(n + 1) - nan] \/ 2 整理得 a(n + 1) \/ an = ...

已知数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)\/2a(n+1)(n∈正整数)
解:(1)因为a1+2a2+3a3+…+nan=n+1 2 an+1(n∈N*)所以a1+2a2+3a3+…+(n-1)an-1=n 2 an(n≥2)---(1分)两式相减得nan=n+1 2 an+1-n 2 an 所以(n+1)an+1 nan =3(n≥2)---(2分)因此数列{nan}从第二项起,是以2为首项,以3为公比的等比数列 所以nan=...

已知数列{an}中,a1=1,a1+2a2+3a3+……+nan=(n+1)\/2*an+1 求数列{an}...
其实是这样的:这题答案是 a(1)=a(2)=1,a(n)=2\/n*3^(n-2)我简要地说一下 对于题目的等式,变量分别取n和n-1得两个式子,相减化简得到a(n)\/a(n-1)=(n-2)\/(n-1).注意到a(1)=a(2)=1,a(3)=2,a(3)\/a(2)是满足此条件的起始项,然后累乘就得到想要的答案,注意项数 ...

已知数列{an} a1=1 a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)(n属于N*...
a1+2a2+3a3+………+(n-1)a(n-1)=n\/2*an ② 由①-②得nan=(n+1)\/2 * a(n+1) -n\/2 *an n\/2 *an=(n+1)\/2 *a(n+1)a(n+1)\/an=n\/(n+1)所以an=a1×a2\/a1×a3\/a2×…an\/a(n-1)=1×1\/2×2\/3×…(n-1)\/n =1\/n (2)n^2an=n²×1\/n=...

已知数列{an}a1=1a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)(n属于N*...
解:a1+2a2+3a3+………+nan=(n+1)\/2*a(n+1)① a1+2a2+3a3+………+(n-1)a(n-1)=n\/2*an② 由①-②得nan=(n+1)\/2*a(n+1)-n\/2*an n\/2*an=(n+1)\/2*a(n+1)a(n+1)\/an=n\/(n+1)所以an=a1×a2\/a1×a3\/a2×…an\/a(n-1)=1×1\/2×2\/3×…(n-1)...

数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+12an+1(n∈N*).证明数列{nan}(n...
证明:∵a1+2a2+3a3+…+nan=n+12an+1(n∈N*),∴a1+2a2+3a3+…+(n?1)an?1=n2an(n≥2),两式相减得nan=n+12an+1?n2an,∴(n+1)an+1nan=3(n≥2),因此,数列{nan}从第二项起,是以2为首项,以3为公比的等比数列.

已知数列an中,a1=1,a1+2a2+3a3+…+nan=(n+1)\/2*an+1
x`y表示x的y次方 设上面这条式子等于An An-An-1=nan=n\/2*an-1 an*an-1=1\/2 a1=a3=...=a2n-1=1 a2=a4=...=a2n=1\/2 (n为正整数)

在数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)(an+1)\/2,求{an}的通项
令n=1得:a1=2a2\/2, a2=1.当n≥2时,a1+2a2+3a3+...+(n-1)a(n-1)=na(n)\/2,两式相减得:nan=(n+1)(a(n+1))\/2 -na(n)\/2,3na(n)\/2=(n+1)(a(n+1))\/2,a(n+1) \/a(n)= 3n\/(n+1)( n≥2),所以a3\/a2=3•2\/3,a4\/a3=3•3\/4,a5\/a4=3...

相似回答